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Empirical Investment Literature

The empirical investment literature is full of
disappointments. From time to time waves of new ideas
challenge the aggregate investment equation, but these
challenges are rarely successful, and progress is, at best, slow.
There are serious theoretical obstacles, stemming mostly
from the richness of the cross-sectional and time-series
scenarios faced by actual investors, from the complexity of
the investment technologies available to them, and from the
myriad incentive problems that these agents face. There are
at least as complex, and perhaps insurmountable, data
problems. Both right- and left-hand side variables are seldom
measured properly.

Caballero, Engel, and Haltiwanger, “Plant-Level Adjustment and
Aggregate Investment Dynamics”
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Empirical Investment Literature

• Many early papers focus on neoclassical model

• “User cost” and “q theory” formulations

• Finds model does not fit the data well at micro or macro level

• Two main responses:

Ȣ. Real adjustment frictions with nonconvexities

Ѱ. Financial frictions to acquiring investment funds are
important
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The Neoclassical Model

Consider individual firm investment problem:

• Firm i with production function

yit = kαit , α ≤ Ȣ

• Invest to accumulate capital kit+Ȣ = (Ȣ− δ)kit + iit

• Quadratic adjustment costs −ϕѰ
(

iit
kit

)Ѱ
kit

• Discount future at constant rate r

v(kit) = max
iit,kit+Ȣ

kαit − iit −
ϕ

Ѱ

(
iit
kit

)Ѱ
kit +

Ȣ
Ȣ+ r

v(kit+Ȣ)

such that kit+Ȣ = (Ȣ− δ)kit + iit
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The Neoclassical Model

v(kit) = max
iit,kit+Ȣ

kαit − iit −
ϕ

Ѱ

(
iit
kit

)Ѱ
kit +

Ȣ
Ȣ+ r

v(kit+Ȣ)

such that kit+Ȣ = (Ȣ− δ)kit + iit (×qit)

Take first order conditions:

Ȣ+ ϕ(
iit
kit

) =qit

qit =v′(kit+Ȣ)

=
Ȣ

Ȣ+ r

∞∑
s=ѵ

(
Ȣ− δ
Ȣ+ r

)s (
αkα−Ȣit+s+Ȣ +Φit+s+Ȣ

)
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The User Cost Model: ϕ = ѵ

With ϕ = ѵ, first order conditions simplify to

qit =Ȣ

αkα−Ȣit+Ȣ︸ ︷︷ ︸
MPKit

= r+ δ︸︷︷︸
user cost

• The user cost of capital is the implicit rental rate on capital

• Typically extended to incorporate other empirically relevant
features:

ust = pt︸︷︷︸
relative price of capital

×
Ȣ−mst − zst

Ȣ− τt︸ ︷︷ ︸
taxes

×(rt + δs)
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Empirical Performance of the User Cost Model

• Typical regression takes the form

iit
kit

= αi + βuit + Γother variablesit + εit

• Two main failures of user cost model:
Ȣ. Estimated user cost elasticity β small (≈ ѵ to -ѵ.ѳ)
Ѱ. Coefficients on other variables, especially cash flow, large

and significant

• Hall and Jorgensen (ȢѴ6ƭ); Cummins, Hassett, and Hubbard
(ȢѴѴѲ); Chirinko, Fazarri, and Meyer (ȢѴѴѴ)
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The Q-Theory Model: ϕ ≥ ѵ

qit =Ȣ+ ϕ(
iit
kit

)

qit =v′(kit+Ȣ) =
Ȣ

Ȣ+ r

∞∑
s=ѵ

(
Ȣ− δ
Ȣ+ r

)s (
αkα−Ȣit+s+Ȣ +Φit+s+Ȣ

)

• Two key implications of the model:
Ȣ. qit is the marginal value of capital to the firm
Ѱ. Investment positively related to qit: iit

kit
= Ȣ
ϕ(qit − Ȣ)

• Hayashi (ȢѴ8Ѱ): under constant returns, v′(kit) =
v(kit)
kit

• Marginal q = average q (sometimes called Tobin’s q)
• Extend to include relative price, taxes, etc.
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Empirical Performance of the Q Model

• Typical regression takes the form

iit
kit

= αi + βqit + Γother variablesit + εit

• Two main failures of the Q model:
Ȣ. Estimated coefficient β small and unstable
Ѱ. Coefficients on other variables, especially cash flow, large

and significant

• Summers (ȢѴ8Ȣ); Cummins, Hassett, and Hubbard (ȢѴѴѲ);
Erickson and Whited (Ѱѵѵѵ)
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Doms and Dunne (ȢѴѴ8)

Two responses to failure of neoclassical model:

Ȣ. Nonconvex adjustment costs are important

Ѱ. Financial frictions to acquiring investment funds are important

Doms and Dunne (ȢѴѴ8):

• Landmark descriptive study of investment in LRD

• Shows micro-level investment is lumpy, i.e., occurs mainly along
extensive margin

• Fluctuations in total investment mainly due to extensive
margin

• Suggests important role for fixed adjustment costs
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Measurement

• Use Census data from LRD, ȢѴƭѰ - ȢѴ88

• After ȢѴ88, stopped collecting book value of capital

• Construct capital stock using perpetual inventory method

• Focus on balanced panel

• Analyze the growth rate of capital for plant i at time t

GKit =
iit − δkit−Ȣ

ѵ.ѳ× (kit−Ȣ + kit)
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Plant-Level Investment is Lumpy Across Plants

• ѳȢ.Ѵ% of plants increase capital ≤ Ѱ.ѳ%
• ȢȢ% of plants increase capital ≥ Ѱѵ%

Ȣѵ



Plant-Level Investment is Lumpy Across Plants

• ѳȢ.Ѵ% of plants increase capital ≤ Ѱ.ѳ%
• ȢȢ% of plants increase capital ≥ Ѱѵ%

Ȣѵ



Plant-Level Investment is Lumpy Within Plants

• Capital growth in largest investment episode nearly ѳѵ%
• In median investment episode approximately ѵ%
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Plant-Level Investment is Lumpy Within Plants
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Plant-Level Investment Lumpier than Firm-Level
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Frequency of Spikes Correlated with Aggregate
Investment
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Zwick and Mahon (ѰѵȢ6)

Two responses to failure of neoclassical model:

Ȣ. Nonconvex adjustment costs are important

Ѱ. Financial frictions to acquiring investment funds are important

Zwick and Mahon (ѰѵȢ6):

• Clean study exploiting exploiting policy-induced variation in cost
of capital

• Shows investment very responsive to cost, especially for
small/non-dividend paying firms

• Suggests important role for financial frictions (and potentially
fixed costs)
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Bonus Depreciation Allowance

• Bonus shifts depreciation allowances from future to present

• With discounting, lowers the total cost of investment
=⇒ Bonus more valuable for longer-lived investment
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Bonus Depreciation Allowance

zsѵ =
∑Ts

t=ѵ
Ȣ

(Ȣ+r)tDt

zst = θ × Ȣ+ (Ȣ− θ)× zsѵ
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Data

The most complete dataset yet applied to study business
investment incentives.

• Representative panel drawn from universe of corporate firms in
US

• Released by Statistics of Income division of IRS
• Available to researchers through proposal application system

• Also used by BEA to finalize national income statistics

• Investment iit measured as expenditures on equipment eligible for
Bonus

• PV of depreciation allowances zst constructed at four digit level
using r = ƭ%
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Identification Strategy

• Identify effect of policy using difference-in-differences design

• Treatment group: firms in long-lived industries
• Control group: firms in short-lived industries

• Regression specification

f(iit, kit) = αi + δt + βg(zst) + γXit + εit

• f(iit, kit): log iit, log pst
Ȣ−pst , or

iit
kit

• g(zst): zst or Ȣ−τzst
Ȣ−τ

• Key assumption for difference-in-differences: parallel trends holds

Ȣ6



Graphical Evidence
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Overall Effect of Bonus on Investment

f(iit, kit) = αi + δt + βg(zst) + γXit + εit
Ȣ8



Larger Effect Than Existing Literature
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Heterogeneity Suggestive of Financial Frictions
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Heterogeneity Explains Larger Estimate than
Literature
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Unfair Review of Empirical Investment Lit

• Neoclassical model predicts investment very responsive to cost
• User cost formulation: capital stock responds to implied
rental rate

• Q theory formulation: investment responds to marginal value
of capital

• ȢѴ6ѵs - ȢѴѴѵs: both formulations largely fail in data
• Capital/investment unresponsive to cost
• Other variables (cash flow) significant

• Two responses to failure of neoclassical model
Ȣ. Adjustment costs feature nonconvexities
Ѱ. Financial frictions influence investment behavior

ѰѰ



Unfair Review of Empirical Investment Lit

• Neoclassical model predicts investment very responsive to cost
• User cost formulation: capital stock responds to implied
rental rate

• Q theory formulation: investment responds to marginal value
of capital

• ȢѴ6ѵs - ȢѴѴѵs: both formulations largely fail in data
• Capital/investment unresponsive to cost
• Other variables (cash flow) significant

• Two responses to failure of neoclassical model
Ȣ. Adjustment costs feature nonconvexities
Ѱ. Financial frictions influence investment behavior

ѰѰ



Unfair Review of Empirical Investment Lit

• Neoclassical model predicts investment very responsive to cost
• User cost formulation: capital stock responds to implied
rental rate

• Q theory formulation: investment responds to marginal value
of capital

• ȢѴ6ѵs - ȢѴѴѵs: both formulations largely fail in data
• Capital/investment unresponsive to cost
• Other variables (cash flow) significant

• Two responses to failure of neoclassical model
Ȣ. Adjustment costs feature nonconvexities
Ѱ. Financial frictions influence investment behavior

ѰѰ



The Rest of This Topic

Focus on role of nonconvex adjustment costs in explaining micro and
macro investment dynamics

Ȣ. Models of micro-level investment behavior

Ѱ. Aggregate implications of these models

• Aggregation
• General equilibrium
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Plan for this Topic
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Cooper and Haltiwanger (Ѱѵѵ6)

• What types of adjustment costs do we need to match micro-level
investment behavior?

• Pays special attention to lumpy nature of investment

• Answer using an estimated structural model
• Simulated method of moments

• A note on terminology in this literature:
• Partial equilibrium = analyzing decision rules with fixed
prices

• Does NOT mean equilibrium in one market! (which would be
correct)
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LRD Data

Sample

• Establishment-level observations

• Balanced panel: model abstracts from entry and exit

• ȢѴƭѰ - ȢѴ88: want to use data on expenditures and retirements

Measurement

• Investment iit: expenditureit − retirmentsit
• Capital kit: kit+Ȣ = (Ȣ− δit)kit + iit
• Depreciation δit: constructed to reflect in-use depreciation
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Cross-Sectional Distribution of Investment Rates

• Large mass of observations near zero
• Highly skewed and fat right tails
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General Investment Model

Bellman equation

v(zit, kit) =max
iit

ezitkαit − p(iit)iit − c(iit, kit, zit)

+
Ȣ

Ȣ+ r
Et[v(zit+Ȣ, (Ȣ− δ)kit + iit)]

Adjustment costs

c(iit, kit, zit) =
γ

Ѱ

(
iit
kit

)Ѱ
kit︸ ︷︷ ︸

convex

+1 (iit ̸= ѵ) (Fkit + λezitkαit )︸ ︷︷ ︸
nonconvex

Irreversibilities

p(iit) = Ȣ× 1 (iit ≥ ѵ)︸ ︷︷ ︸
buying

+ ps × 1 (iit < ѵ)︸ ︷︷ ︸
selling
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No Adjustment Costs

v(zit, kit) =max
iit

ezitkαit − iit +
Ȣ

Ȣ+ r
Et[v(zit+Ȣ, (Ȣ− δ)kit + iit)]

Optimal Behavior

Ȣ =
Ȣ

Ȣ+ r
Et[vѰ(zit+Ȣ, kit+Ȣ)]

→ user cost model: r+ δ = Et[αkα−Ȣit+Ȣ ]

Ѱ8
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Convex Costs Only

v(zit, kit) =max
iit

ezitkαit − iit − c(iit, kit, zit) +
Ȣ

Ȣ+ r
Et[v(zit+Ȣ, kit+Ȣ)]

c(iit, kit, zit) =
γ

Ѱ

(
iit
kit

)Ѱ
kit

Optimal Behavior

Ȣ+ γ
(
iit
kit

)
=

Ȣ
Ȣ+ r

Et[vѰ(zit+Ȣ, kit+Ȣ)]

→ Q-theory model:
iit
kit

=
Ȣ
γ
(Et[vѰ(zit+Ȣ, kit+Ȣ)]− Ȣ)
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Nonconvex Costs

v(zit, kit) =max
iit

ezitkαit − iit − c(iit, kit, zit) +
Ȣ

Ȣ+ r
Et[v(zit+Ȣ, kit+Ȣ)]

c(iit, kit, zit) =
γ

Ѱ

(
iit
kit

)Ѱ
kit + 1 (iit ̸= ѵ) (Fkit + λezitkαit )

Optimal Behavior

va(zit, kit) =max
iit

ezitkαit − iit − c(iit, kit, zit) +
Ȣ

Ȣ+ r
Et[v(zit+Ȣ, kit+Ȣ)]

vn(zit, kit) =ezitkαit − iit +
Ȣ

Ȣ+ r
Et[v(zit+Ȣ, (Ȣ− δ)kit)]

→ Adjust iff va(zit, kit) > vn(zit, kit)
• Depreciation
• Productivity shock
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Irreversibility

v(zit, kit) =max
iit

ezitkαit − iit +
Ȣ

Ȣ+ r
Et[v(zit+Ȣ, kit+Ȣ)]

p(iit) =Ȣ× 1 (iit ≥ ѵ) + ps × 1 (iit < ѵ)

Optimal Behavior

vb(zit, kit) =max
iit>ѵ

ezitkαit − iit +
Ȣ

Ȣ+ r
Et[v(zit+Ȣ, kit+Ȣ)]

vs(zit, kit) =max
iit<ѵ

ezitkαit − psiit +
Ȣ

Ȣ+ r
Et[v(zit+Ȣ, kit+Ȣ)]

vn(zit, kit) =ezitkαit +
Ȣ

Ȣ+ r
Et[v(zit+Ȣ, (Ȣ− δ)kit)]

→ Also generates inaction
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Illustration of Various Frictions
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Model Quantification

Overall strategy
Ȣ. Fix a subset of parameters
Ѱ. Estimate shock process using measured TFP-type approach
ѱ. Estimate adjustment costs to match moments

Fixed parameters
• Depreciation rate δ = 6.Ѵ%
• Discount rate r = ѳ.Ѱѳ%

Estimate idiosyncratic shocks
• Assume zit = εit + bt
• Assume AR(Ȣ) and use GMM on

log(πit) = ρϵ log(πit−Ȣ) + θkit − ρϵθkit−Ȣ + bt − ρϵbt−Ȣ + ηit
• See paper for details
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Estimating Adjustment Cost Parameters

• Estimate parameters for two separate cases:
Ȣ. Fixed cost case: estimate Θ = (γ, F, ps), set λ = Ȣ
Ѱ. Opportunity cost case: estimate Θ = (γ, λ, ps), set F = ѵ

• Simulated Method of Moments (SMM)

Θ̂ = argmin
Θ

[Ψd −Ψs(Θ)]TW [Ψd −Ψs(Θ)]

• Data moments Ψd: drawn from data
• Model moments Ψs(Θ): simulated panel of firms frommodel

• Weighting matrixW: efficient matrix from GMM
• Standard errors: GMM formulas plus factor for Monte Carlo
error
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Estimation Results: Fixed Cost Case

Estimated fixed cost F ≊ Ѳ% of capital stock
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Estimation Results: Disruption Cost Case

Estimated disruption cost Ȣ− λ ≊ Ѱѵ% of profits

On average, pay ѱ.Ȣ% of profits in AC when adjust

ѱ6



Estimation Results: Disruption Cost Case

Estimated disruption cost Ȣ− λ ≊ Ѱѵ% of profits

On average, pay ѱ.Ȣ% of profits in AC when adjust

ѱ6



Cooper and Haltiwanger (Ѱѵѵ6): Wrapping Up

• What types of adjustment costs do we need to match micro
data?

Non-convexities:
• Fixed costs
• Disruption costs
• Irreversibilities

• Nice illustration of Simulated Method of Moments (SMM)
methodology

• Specify moments of the data you think are important
• Select parameters which are well-identified by those
moments

• Choose parameters to get model as close as possible to data
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Asker, Collard-Wexler, and De Loecker (ѰѵȢѲ)

Shows Cooper-Haltiwanger (Ѱѵѵ6) model also explains much of
MRPKit dispersion documented by Hsieh and Klenow (ѰѵѵѴ)

Data: LRD, ȢѴƭѰ - ȢѴѴƭ

• Also use cross-country data for analysis in paper

Model: Cooper-Haltiwanger (Ѱѵѵ6) opportunity cost model

v(zit, kit) =max
iit

ezitkαit − iit − c(iit, kit, zit) +
Ȣ

Ȣ+ r
Et[v(zit+Ȣ, kit+Ȣ)]

c(iit, kit, zit) =
γ

Ѱ

(
iit
kit

)Ѱ
kit + 1 (iit ̸= ѵ)λezitkαit
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Estimation

Estimate Θ = (γ, λ) using SMM

Θ̂ = argmin
Θ

[Ψd −Ψs(Θ)]TW [Ψd −Ψs(Θ)]
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Higher Idiosyncratic Volatility→ Higher MRPK
Dispersion

• MRPKit = α yit
kit

• Time to build→ ex-post dispersion
• Adjustment costs→ ex-ante dispersion
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Idiosyncratic Volatility and MRPK Dispersion in Data
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Quantitative Amount of Dispersion Explained
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Plan for this Topic

Ȣ. An unfair summary of the empirical investment literature

Ѱ. Accounting for micro-level investment behavior with nonconvex
adjustment costs

ѱ. Macro implications of nonconvex adjustment costs
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Aggregate Implications of Micro Investment Models

Ȣ. Aggregation of micro-level models holding prices fixed (partial
equilibrium)

• Response of aggregate investment to shocks depends on
number of firms who adjust

• Aggregate investment features time-varying elasticity w.r.t.
shocks

• Representative firm instead predicts constant elasticity

Ѱ. Endogenize prices in general equilibrium
• In benchmark RBC framework, procyclical real interest rate
eliminates time-varying elasticity

• Modifications to benchmark model can break this irrelevance
result
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General Lessons

Ȣ. Anytime you go from micro to macro, need to think about
• Aggregation
• General equilibrium

Ѱ. Macro models with micro heterogeneity are hard
• Entire cross-sectional distribution of agents part of state
vector

• Difficult to numerically compute and estimate

• Aggregate implications of lumpy investment models good
illustration of these more general issues

• Each of these steps has been extensively studied
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Outline of Next Steps

Ȣ. Benchmark general equilibrium model with lumpy investment:
Khan and Thomas (Ѱѵѵ8)

• Aside: how to numerically compute heterogeneous agent
models

Ѱ. Model generates time-varying elasticity in partial equilibrium

ѱ. Model generates constant elasticity in general equilibrium

Ѳ. Two broad responses to irrelevance result in literature

• Specification of micro-level adjustment costs
• Specification of general equilibrium
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Model Overview

Heterogeneous Firms

• Fixed mass

• Idiosyncratic + aggregate productivity shocks

• Fixed capital adjustment costs

Representative Household

• Owns firms

• Supplies labor

• Complete markets

Ѳ6



Heterogeneous Firms

Production technology yjt = ezteεjtkθjtn
ν
jt , θ + ν < Ȣ

• Idiosyncratic productivity shock εjt+Ȣ = ρϵεjt + ω
ε
jt+Ȣ where

ωεjt+Ȣ ∼ N(ѵ, σѰϵ )

• Aggregate productivity shock zt+Ȣ = ρzzt + ωz
t+Ȣ where

ωz
t+Ȣ ∼ N(ѵ, σѰz )

Firms accumulate capital according to kjt+Ȣ = (Ȣ− δ)kjt + ijt

• If ijt
kjt
/∈ [−a, a], pay fixed cost ξjt in units of labor

• Fixed cost ξjt ∼ U[ѵ, ξ]
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Firm Optimization Problem: Recursive Formulation

v (ε, k, ξ; s) = max
n

ezeεkθnν − w (s) n

+max
{
vA (ε, k; s)− w (s) ξ, vN (ε, k; s)

}
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ezeεkθnν − w (s) n

+max
{
vA (ε, k; s)− w (s) ξ, vN (ε, k; s)

}
vA (ε, k; s) = max

i∈R
−i+ E [Λ (s′) v (ε′, k′, ξ′; s′) |ε, k; s]

vN (ε, k; s) = max
i∈[−ak,ak]
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Firm Optimization Problem: Recursive Formulation

v (ε, k, ξ; s) = max
n

ezeεkθnν − w (s) n

+max
{
vA (ε, k; s)− w (s) ξ, vN (ε, k; s)

}

v̂ (ε, k; s) = max
n

ezeεkθnν − w (s) n

+
ξ̂ (ε, k; s)

ξ

(
vA (ε, k; s)− w (s)

ξ̂ (ε, k; s)
Ѱ

)

+

(
Ȣ−

ξ̂ (ε, k; s)
ξ

)
vN (ε, k; s)
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Household

Representative household who owns all firms in the economy

max
Ct,Nt
Eѵ

∞∑
t=ѵ

βt (logCt − aNt) such that

Ct = wtNt +Πt

Complete markets implies that Λt,t+Ȣ = β
(
Ct+Ȣ
Ct

)−Ȣ
• Firms maximize their market value
• Market value given by expected present value of dividends using
stochastic discount factor

• With complete markets, SDF is household’s intertemporal
marginal rate of substitution
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Defining Recursive Competitive Equilibrium

What is the aggregate state s?

• Aggregate shock z

• Firm’s individual states: productivity ε and capital k
→ need distribution of firms g(ε, k)

What is the law of motion for the s?

gt+Ȣ (ε
′, k′) =

∫ [
Ȣ {ρεε+ σεω′ε = ε′}

×
∫
Ȣ
{
k′t (ε, k, ξ) = k′

}
dG(ξ)

]
× p (ω′ε) gt (ε, k) dω′εdεdk
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Recursive Competitive Equilibrium

A set of v(ε, k; z, g), C(z, g), w(z, g), Λ(z′; z, g), and g′(z, g) such that

Ȣ. Firm optimization: Taking Λ(z′; z, g) and w(z, g) as given,
v(ε, k; z, g) solves Bellman equation

Ѱ. Household optimization: w(z, g)C(z, g)−Ȣ = a

ѱ. Market clearing + consistency:

Λ(z′; z, g) = β

(
C(z′, g′(z, g))

C(z, g)

)−Ȣ
C(z, g) =

∫
(y(ε, k, ξ; z, g)− i(ε, k, ξ; z, g))dG(ξ)g(ε, k)dεdk

g′(ε, k) satisfies law of motion for distribution
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Outline of Next Steps

Ȣ. Benchmark general equilibrium model with lumpy investment:
Khan and Thomas (Ѱѵѵ8)

• Aside: how to numerically compute heterogeneous agent
models

Ѱ. Model generates time-varying elasticity in partial equilibrium

ѱ. Model generates constant elasticity in general equilibrium

Ѳ. Two broad responses to irrelevance result in literature

• Specification of micro-level adjustment costs
• Specification of general equilibrium

ѳȢ



Computing Equilibrium

• Key challenge: aggregate state g is infinite-dimensional

• Two steps:
Ȣ. Compute steady state without aggregate shocks→

distribution constant at g∗

Ѱ. Compute full model with aggregate shocks→ distribution
varies over time

• Today will give you an overview to help you read papers
• My HWѰ: solve steady state
• Aggregate dynamics: Khan and Thomas (Ѱѵѵ8); Winberry
(ѰѵȢ6); Terry (ѰѵȢ6)

ѳѰ



Computing Equilibrium

• Key challenge: aggregate state g is infinite-dimensional

• Two steps:
Ȣ. Compute steady state without aggregate shocks→

distribution constant at g∗

Ѱ. Compute full model with aggregate shocks→ distribution
varies over time

• Today will give you an overview to help you read papers
• My HWѰ: solve steady state
• Aggregate dynamics: Khan and Thomas (Ѱѵѵ8); Winberry
(ѰѵȢ6); Terry (ѰѵȢ6)

ѳѰ



Computing Equilibrium

• Key challenge: aggregate state g is infinite-dimensional

• Two steps:
Ȣ. Compute steady state without aggregate shocks→

distribution constant at g∗

Ѱ. Compute full model with aggregate shocks→ distribution
varies over time

• Today will give you an overview to help you read papers
• My HWѰ: solve steady state
• Aggregate dynamics: Khan and Thomas (Ѱѵѵ8); Winberry
(ѰѵȢ6); Terry (ѰѵȢ6)

ѳѰ



Steady State Recursive Competitive Equilibrium

A set of v∗(ε, k), C∗, w∗, and g∗(ε, k) such that

Ȣ. Firm optimization: Taking w∗ as given: v∗(ε, k) solves Bellman
equation

Ѱ. Household optimization: Taking w∗ as given: w∗(C∗)−Ȣ = a

ѱ. Markets clearing + consistency:

C∗ =
∫
(y(ε, k, ξ)− i(ε, k, ξ))dG(ξ)g∗(ε, k)dεdk

g∗(ε, k) satisfies law of motion for distribution given g∗
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g∗(ε, k) satisfies law of motion for distribution given g∗
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Hopenhayn-Rogerson (ȢѴѴѱ) Algorithm

Start with guess of w∗

• Solve firm optimization problem→ v∗(ε, k)

• Compute stationary distribution g∗(ε, k)

• Compute implied aggregate consumption C∗

• Check household optimization w∗(C∗)−Ȣ = a

Update guess of w∗
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Hopenhayn-Rogerson (ȢѴѴѱ) Algorithm

Start with guess of w∗

• Solve firm optimization problem→ v∗(ε, k)

• Compute stationary distribution g∗(ε, k)

• Compute implied aggregate consumption C∗

• Check household optimization w∗(C∗)−Ȣ = a

Update guess of w∗
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Steady State Outcomes

Distribution in model with no idiosyncratic productivity shocks
Investment decision characterized by adjustment hazard
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Full Model with Aggregate Shocks

• Outside of steady state, three key challenges

Ȣ. Distribution g varies over time→ how to approximate
distribution?

Ѱ. Law of motion for g is complicated→ how to approximate
law of motion?

ѱ. Prices are functions of distribution→ how to approximate
these functions?

• Will briefly describe two approaches to dealing with these
challenges
Ȣ. Krusell and Smith (ȢѴѴ8): approximate distribution with

moments
Ѱ. Winberry (ѰѵȢ6): approximate distribution with flexible

parametric family

• If curious: continuous time makes this easier (Ahn, Kaplan, Moll,
Winberry, and Wolf ѰѵȢƭ)

ѳ6



Full Model with Aggregate Shocks

• Outside of steady state, three key challenges
Ȣ. Distribution g varies over time→ how to approximate

distribution?
Ѱ. Law of motion for g is complicated→ how to approximate

law of motion?
ѱ. Prices are functions of distribution→ how to approximate

these functions?

• Will briefly describe two approaches to dealing with these
challenges
Ȣ. Krusell and Smith (ȢѴѴ8): approximate distribution with

moments
Ѱ. Winberry (ѰѵȢ6): approximate distribution with flexible

parametric family

• If curious: continuous time makes this easier (Ahn, Kaplan, Moll,
Winberry, and Wolf ѰѵȢƭ)

ѳ6



Full Model with Aggregate Shocks

• Outside of steady state, three key challenges
Ȣ. Distribution g varies over time→ how to approximate

distribution?
Ѱ. Law of motion for g is complicated→ how to approximate

law of motion?
ѱ. Prices are functions of distribution→ how to approximate

these functions?

• Will briefly describe two approaches to dealing with these
challenges
Ȣ. Krusell and Smith (ȢѴѴ8): approximate distribution with

moments
Ѱ. Winberry (ѰѵȢ6): approximate distribution with flexible

parametric family

• If curious: continuous time makes this easier (Ahn, Kaplan, Moll,
Winberry, and Wolf ѰѵȢƭ)

ѳ6



Full Model with Aggregate Shocks

• Outside of steady state, three key challenges
Ȣ. Distribution g varies over time→ how to approximate

distribution?
Ѱ. Law of motion for g is complicated→ how to approximate

law of motion?
ѱ. Prices are functions of distribution→ how to approximate

these functions?

• Will briefly describe two approaches to dealing with these
challenges
Ȣ. Krusell and Smith (ȢѴѴ8): approximate distribution with

moments
Ѱ. Winberry (ѰѵȢ6): approximate distribution with flexible

parametric family

• If curious: continuous time makes this easier (Ahn, Kaplan, Moll,
Winberry, and Wolf ѰѵȢƭ)

ѳ6



Krusell and Smith (ȢѴѴ8)

• Approximate distribution with moments, e.g., g(ε, k) ≈ K

• Law of motion: logK′ = αѵ + αȢz+ αѰ logK
• Pricing functions: logC = γѵ + γȢz+ γѰ logK

• Given guess α and γ
• Compute individual decisions v(ε, k; z,K)
• Simulate decision rules→ {Kt,Ct, zt}

• Update α and γ using OLS

• RѰ on regressions typical accuracy measure
• Only Kmatters→ distribution not important (“approximate
aggregation”)

• Problems with this measure: Den Haan (ѰѵȢѵ)
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Winberry (ѰѵȢ8)

• Approximate distribution with parametric family:

g (ε, k) ∼= gѵ exp{gȢȢ
(
ε−mȢ

Ȣ

)
+ gѰȢ

(
k−mѰ

Ȣ

)
+

ng∑
i=Ѱ

i∑
j=ѵ

gji

[(
ε−mȢ

Ȣ

)i−j (
k−mѰ

Ȣ

)j
−mj

i

]
}

→ Aggregate state approximated by (z, g(ε, k)) ≈ (z,m)

• Compute law of motion + prices directly by integration

• Compute aggregate dynamics using perturbation methods
• Solve for steady state in Matlab
• Solve for aggregate dynamics using Dynare
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Winberry (ѰѵȢ8)

Productivity Capital

ng = 1

ng = 2

ng = 6

Exact

ng = 1

ng = 2

ng = 6

Exact

• Run time ≈ Ѱѵ - Ѳѵ seconds for accurate approximation
• Fast enough for likelihood-based estimation
• Codes at my website
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Outline of Next Steps

Ȣ. Benchmark general equilibrium model with lumpy investment:
Khan and Thomas (Ѱѵѵ8)

• Aside: how to numerically compute heterogeneous agent
models

Ѱ. Model generates time-varying elasticity in partial equilibrium

ѱ. Model generates constant elasticity in general equilibrium

Ѳ. Two broad responses to irrelevance result in literature

• Specification of micro-level adjustment costs
• Specification of general equilibrium

ѳѴ



Khan and Thomas (Ѱѵѵ8) Calibration

Parameter Description Value
Households
β Discount factor .Ѵ6Ȣ
ψ Labor disutility N∗ = Ȣ

ѱ
Firms
ν Labor share .6Ѳ
θ Capital share .Ѱѳ6
δ Capital depreciation .ѵ8ѳ
ξ Fixed cost .ѵѵ8ѱ
a No fixed cost region .ѵȢȢ
ρε Idiosyncratic TFP AR(Ȣ) .8ѳѴ
σε Idiosyncratic TFP AR(Ȣ) .ѵѰѰ
Aggregate shock
ρz Aggregate TFP AR(Ȣ) .8ѳѴ
σz Aggregate TFP AR(Ȣ) .ѵȢѲ

6ѵ



Complicated Impulse Responses

Response of aggregate investment to shock depends on interaction of
initial distribution and adjustment hazards

6Ȣ



Implication: Sign Dependence

Aggregate investment more responsive to positive than negative
shocks
Note true in frictionless model 6Ѱ



Implication: State Dependence

From Bachmann, Caballero, and Engel (ѰѵȢѱ)

It
Kt

=

p∑
j=Ȣ

ϕj
It−j
Kt−j

+ σtet

σt =αȢ + ηȢ
Ȣ
p

p∑
j=Ȣ

It−j
Kt−j

6ѱ



Aggregate Nonlinearities

• Both of these are examples of nonlinear aggregate dynamics
• Linear model has constant loading on aggregate shock

• Some evidence in aggregate data
• Sign and state dependence→ distribution of It

Kt positively
skewed

• State dependence→ dynamics of It
Kt feature conditional

heteroskedasticity

• My view: time series evidence is suggestive at best
• Predictions are about extreme states, which are rare
• But that is exactly when we care about these predictions!
→ rely on cross-sectional data + carefully specified general
equilibrium model
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Outline of Next Steps

Ȣ. Benchmark general equilibrium model with lumpy investment:
Khan and Thomas (Ѱѵѵ8)

• Aside: how to numerically compute heterogeneous agent
models

Ѱ. Model generates time-varying elasticity in partial equilibrium

ѱ. Model generates constant elasticity in general equilibrium

Ѳ. Two broad responses to irrelevance result in literature
• Specification of micro-level adjustment costs
• Specification of general equilibrium

ѳ. If time, discuss policy implications
6Ѳ



Distribution of Aggregate It
Kt
in Partial Equilibrium
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Distribution of Aggregate It
Kt
in General Equilibrium
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Distribution of Aggregate It
Kt
in General Equilibrium
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Business Cycles Nearly Identical to Representative
Firm

6ƭ



Why Do the Nonlinearities Disappear?

General equilibrium price movements

• Time-varying elasticity comes from large movements in
adjustment hazard

• Procyclical real interest rate and wage restrain those movements

Ȣ+ rt =
Ȣ

E[Λt,t+Ȣ]

Specification of adjustment costs

• Calibrated adjustment costs small

68
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• Aside: how to numerically compute heterogeneous agent
models

Ѱ. Model generates time-varying elasticity in partial equilibrium

ѱ. Model generates constant elasticity in general equilibrium

Ѳ. Two broad responses to irrelevance result in literature
• Specification of micro-level adjustment costs: Bachmann,
Caballero, Engel (ѰѵȢѱ), Gourio and Kashyap (Ѱѵѵƭ)

• Specification of general equilibrium
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Bachmann, Caballero, and Engel (ѰѵȢѱ)

• Argue Khan and Thomas’ calibration of adjustment costs
responsible for irrelevance result

• Calibrate larger adjustment costs and recover aggregate
nonlinearities

• Argument based on decomposition between AC smoothing and
PR smoothing

• Frictionless partial equilibrium model excessively volatile
• AC smoothing: dampening due to adjustment costs
• PR smoothing: dampening due to price movements

• Measure AC smoothing in data and target in calibration→ higher
adjustment costs

6Ѵ
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Model

Production technology yjt = ezteεsteεjtkθjtn
ν
jt , θ + ν < Ȣ

• Idiosyncratic productivity shock εjt+Ȣ = ρϵεjt + ω
ε
jt+Ȣ where

ωεjt+Ȣ ∼ N(ѵ, σѰϵ )
• Aggregate productivity shock zt+Ȣ = ρzzt + ωz

t+Ȣ where
ωz
t+Ȣ ∼ N(ѵ, σѰz )

• Sectoral productivity shock εst+Ȣ = ρϵεst + ω
ε
st+Ȣ where

ωεst+Ȣ ∼ N(ѵ, σѰϵs)

Firms accumulate capital according to kjt+Ȣ = (Ȣ− δ)kjt + ijt
• If don’t pay fixed cost, must undertake maintenance investment
χ× δkjt

• Otherwise, pay fixed cost ξjt in units of labor
• Fixed cost ξjt ∼ U[ѵ, ξ]
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Calibration

Set most parameters exogenously

Choose σz, ξ, and χ to match degree of AC-smoothing

• Identify AC-smoothing using volatility of sectoral investment rates
• Aggregated enough to capture interaction of distribution and
hazards

• Small enough to not generate price response

• Targets:

Ȣ. Volatility of aggregate investment rate
Ѱ. Average volatility of sectoral investment rates
ѱ. Amount of conditional heteroskedasticity

ƭȢ
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AC vs. PR Smoothing Decomposition

UB = log [σ(none)/σ(AC)] / log [σ(none)/σ(both)]
LB =Ȣ− log [σ(none)/σ(PR)] / log [σ(none)/σ(both)]
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Calibrated Adjustment Costs
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Aggregate Nonlinearities
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Outline of Next Steps

Ȣ. Benchmark general equilibrium model with lumpy investment:
Khan and Thomas (Ѱѵѵ8)

• Aside: how to numerically compute heterogeneous agent
models

Ѱ. Model generates time-varying elasticity in partial equilibrium

ѱ. Model generates constant elasticity in general equilibrium

Ѳ. Two broad responses to irrelevance result in literature
• Specification of micro-level adjustment costs
• Specification of general equilibrium: Winberry (ѰѵȢ8),
Bachmann and Ma (ѰѵȢ6), Cooper and Willis (ѰѵȢѲ)
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Winberry (ѰѵȢ8)

• Argues that procyclical interest rate in Khan and Thomas’ model
inconsistent with data

• Cooper and Willis (ѰѵȢѲ): feed in from data
• Winberry (ѰѵȢ8): general equilibrium model

• When consistent with data recover aggregate nonlinearities

σ (rt) ρ (rt, yt−Ȣ) ρ (rt, yt) ρ (rt, yt+Ȣ)

T-bill Ѱ.Ȣ8% -ѵ.ѵ8 -ѵ.Ȣƭ -ѵ.ѰѳȢ
AAA Ѱ.ѱѲ% -ѵ.ѰѴ –ѵ.ѱƭ -ѵ.Ѳѵ
BAA Ѱ.Ѳѱ% -ѵ.ѱѰ -ѵ.ѲȢ -ѵ.Ѳѳ
Stock ѰѲ.ƭ% -ѵ.ѰѲ -ѵ.ȢѲ ѵ.ѵѰ
RBC ѵ.Ȣ6% ѵ.6Ȣ ѵ.Ѵƭ ѵ.ƭѲ
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Rolling Windows of rt Dynamics

ƭ6



IRF of rt to TFP Shock
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Model

Firms as in Khan and Thomas except:

• Corporate tax code

• Temporary investment stimulus policy

• Quadratic adjustment costs

Household preferences feature habit formation:

max
Ct,Nt
Eѵ

∞∑
t=ѵ

βt log

(
Ct − Ht − χ

NȢ+η
t

Ȣ+ η

)

St =
Ct − Ht

Ct
and log St = (Ȣ− ρS) log S+ ρS log St−Ȣ + λ log

Ct

Ct−Ȣ
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Calibration

Set most parameters exogeneously

Choose parameters governing micro heterogeneity and habit
formation to match micro investment data and real interest rate
dynamics

• Real interest rate dynamics pin down capital supply and demand
curves

• Capital supply: households smoothing consumption→ habit
formation

• Capital demand: firms demanding future capital→ shocks
and adjustment costs

• Micro investment data pins down shocks and adjustment costs
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State Dependence of TFP Shocks

RIt = Ȣѵѵ× log

(
I(zt + σz,Xt, µt)− I(zt,Xt, µt)
I(σz,X∗, µ∗)− I(ѵ,X∗, µ∗)

)

8ѵ



State Dependence of Stimulus Policy

price of investment = Ȣ− subt

8Ȣ



Conclusion: Takeaways from Topic Ѱ

Ȣ. Investment is lumpy in the microdata

Ѱ. Structural micro models provide evidence for nonconvex
adjustment costs

• SMM estimation

ѱ. Calibrated macro models indicate possibly generates
time-varying aggregate elasticity

• Aggregation and general equilibrium both important
• Solving models with distribution in state vector

8Ѱ


