Micro Data for Macro Models

Topic 1: Productivity Dispersion, Aggregation, and Misallocation

Thomas Winberry

January 7th, 2019

Plan for this Topic

1. Document large and persistent dispersion of firms' productivity

2. Show benchmark irrelevance result: without frictions to inputs, economy still has representative firm

- Measure input frictions using reduced form "misallocation" measures
 - · Substantial frictions at micro-level
 - Implies large differences in the aggregate

Plan for this Topic

1. Document large and persistent dispersion of firms' productivity

2. Show benchmark irrelevance result: without frictions to inputs, economy still has representative firm

- Measure input frictions using reduced form "misallocation" measures
 - · Substantial frictions at micro-level
 - Implies large aggregate effects

Definitions of Productivity

- Productivity is the amount of output produced per unit of inputs
- · Depends on unit of analysis:
 - 1. Establishment: A business or production unit at a single location
 - 2. Firm: A collection of establishments under common legal control
- · Depends on input:
 - 1. Labor productivity: output per labor input $\frac{y_{it}}{n_{it}}$
 - 2. Capital productivity: output per capital input $\frac{y_{it}}{k_{it}}$
 - 3. Total factor productivity: output per composite of inputs $\frac{y_{it}}{k_n^{\alpha} n_n^{1-\alpha}}$

What Is Productivity?

- Productivity is anything that influences output other than measured inputs
 - · A useful measure of our ignorance
- What could it be?
 - 1. Technology
 - 2. Efficiency
 - 3. Managerial skill
 - 4. Market conditions
 - 5. Regulation
 - 6. Utilization

Measuring Productivity in Practice

$$z_{it} = \log(y_{it}) - \alpha \log(k_{it}) - (1 - \alpha) \log(n_{it})$$

Measuring Productivity in Practice

$$Z_{it} = \log(y_{it}) - \alpha \log(k_{it}) - (1 - \alpha) \log(n_{it})$$

1. Estimate output elasticity α

- Factor shares method: with Cobb-Douglas and perfect competition, $1 \alpha = \text{labor share}$
- Production function estimation: have to deal with endogeneity problem

Measuring Productivity in Practice

$$z_{it} = \log(y_{it}) - \alpha \log(k_{it}) - (1 - \alpha) \log(n_{it})$$

1. Estimate output elasticity lpha

- Factor shares method: with Cobb-Douglas and perfect competition, $1 \alpha = \text{labor share}$
- Production function estimation: have to deal with endogeneity problem

2. Construct measures of y_{it} , k_{it} , and n_{it}

- y_{it}: usually gross output (sales) or value added (sales materials)
- k_{it} : book value, replacement value, perpetual inventory
- n_{it} : number of workers, hours worked, wage bill

Stylized Facts About Productivity (Syverson 2011)

1. Enormous dispersion across establishments, even within narrowly-defined sector

- Within average sector, 90th percentile firm is 2 times as productive as 10th
- SD of this range across sectors is 0.17

Stylized Facts About Productivity (Syverson 2011)

Enormous dispersion across establishments, even within narrowly-defined sector

- Within average sector, 90th percentile firm is 2 times as productive as 10th
- SD of this range across sectors is 0.17

2. Productivity is persistent

Annual autocorrelation 0.6 - 0.8

Stylized Facts About Productivity (Syverson 2011)

Enormous dispersion across establishments, even within narrowly-defined sector

- Within average sector, 90th percentile firm is 2 times as productive as 10th
- SD of this range across sectors is 0.17

2. Productivity is persistent

Annual autocorrelation 0.6 - 0.8

3. Productivity matters

Correlated with outcomes like hiring, investment, survival

A Case Study: Castro, Clementi, and Lee (2015)

- A nice illustration of computing TFP using Census data: Annual Survey of Manufactures (ASM)
 - Standard data source for computing productivity (main alternative is Compustat)
 - Confidential; need approved project proposal

Advantages

- Measures of output, labor, and capital
- · Panel dimension allows for fixed-effect analysis
- Long time sample: since late 1970s

Disadvantages

- Only covers manufacturing, a declining share of economy
- Measurement error a potential problem

Variable Definitions and Measurement

$$z_{ist} = \log(y_{ist}) - \alpha_{st}^{k} \log(k_{ist}) - \alpha_{st}^{n} \log(n_{ist}) - \alpha_{st}^{m} \log(m_{ist})$$

- Output y_{ist}: gross revenue divided by 4-digit SIC price deflator from NBER
- Capital k_{ist}: constructed using perpetual inventory method

$$k_{is0} = \text{book value}, k_{ist+1} = (1 - \delta_{st})k_{ist} + \frac{i_{ist}}{p_{st}^i}$$

- i_{ist} : total capital expenditures
- δ_{st} : 2-digit depreciation rates from BEA
- p_{st}^i : 4-digit investment price deflator from NBER

Variable Definitions and Measurement

$$z_{ist} = \log(y_{ist}) - \alpha_{st}^{k} \log(k_{ist}) - \alpha_{st}^{n} \log(n_{ist}) - \alpha_{st}^{m} \log(m_{ist})$$

Labor n_{ist}: total hours of production and nonproduction workers

$$n_{ist} = \text{hours}_{ist}^{\text{prod}} + \frac{\text{wage bill}_{ist}^{\text{nonprod}}}{\text{wage bill}_{ist}^{\text{prod}}} \text{hours}_{ist}^{\text{prod}}$$

- Materials m_{ist}: total materials cost deflated by 4-digit deflator from NBER
- Labor and material elasticities α^n_{st} and α^m_{st} : revenue shares at 4-digit sector
 - Capital elasticity α_{st}^k : $\alpha_{st}^k = 1 \alpha_{st}^n \alpha_{st}^m$

Shocks to TFP

$$z_{ist} = \mu_i + \mu_{st} + \rho_s z_{ist-1} + \beta_s \log(\text{size})_{ist} + \sum_{j=1}^{3} \Psi_{sj} D_{istj} + \varepsilon_{ist}$$

where

- Firm fixed effect μ_i
- Sector-time fixed effect μ_{st}
- Autocorrelation by sector $ho_{\mathbb{S}}$
- Size by industry β_s
- Plant age effects D_{istj}

The residual ε_{ist} is the unforcastable shock to TFP

Shocks to TFP

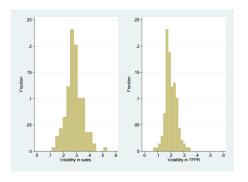


Figure 1: Histogram of idiosyncratic risk by sector.

About 80% of total variation in ε_{ist} is specific to the establishment \rightarrow Most volatility is micro volatility!

Plan for this Topic

1. Document large and persistent dispersion of firms' productivity

2. Show benchmark irrelevance result: without frictions to inputs, economy still has representative firm

- Measure input frictions using reduced form "misallocation" measures
 - · Substantial frictions at micro-level
 - Implies large aggregate effects

Aggregation with Productivity Dispersion

Consider production side of economy in time *t* with:

• Heterogeneous firms $i \in [0, 1]$ with production function

$$y_{it} = e^{Z_{it}} k_{it}^{\alpha_k} n_{it}^{\alpha_n}$$
, $\alpha_k + \alpha_n \leq 1$

- Perfect competition in factor markets
 - Rent capital at rate r_t
 - Hire labor at rate w_t

Aggregation with Productivity Dispersion

Consider production side of economy in time *t* with:

• Heterogeneous firms $i \in [0, 1]$ with production function

$$y_{it} = e^{z_{it}} k_{it}^{\alpha_k} n_{it}^{\alpha_n}$$
, $\alpha_k + \alpha_n \le 1$

- Perfect competition in factor markets
 - Rent capital at rate r_t
 - Hire labor at rate w_t

Can we represent this structure with an aggregate production function?

$$Y_t = e^{Z_t} F(K_t, N_t)$$
 where $K_t = \int k_{it} di$, $N_t = \int n_{it} di$, and $Y_t = \int y_{it} di$

Claim: aggregates Y_t , K_t , and N_t are same with representative firm

$$Y_t = e^{Z_t} K_t^{\alpha_k} N_t^{\alpha_n}$$
 with $Z_t = \log \left(\int (e^{Z_{it}})^{\frac{1}{1 - \alpha_k - \alpha_n}} \right)$

Claim: aggregates Y_t , K_t , and N_t are same with representative firm

$$Y_t = e^{Z_t} K_t^{\alpha_k} N_t^{\alpha_n} \text{ with } Z_t = \log \left(\int (e^{Z_{it}})^{\frac{1}{1 - \alpha_k - \alpha_n}} \right)$$

• First order conditions for profit maximization of firm i:

$$\alpha_k e^{z_{it}} k_{it}^{\alpha_k - 1} n_{it}^{\alpha_n} = r_t$$

 $\alpha_n e^{z_{it}} k_{it}^{\alpha_k} n_{it}^{\alpha_n - 1} = w_t$

→ Firms equalize their marginal products

Claim: aggregates Y_t , K_t , and N_t are same with representative firm

$$Y_t = e^{Z_t} K_t^{\alpha_k} N_t^{\alpha_n}$$
 with $Z_t = \log \left(\int (e^{Z_{it}})^{\frac{1}{1 - \alpha_k - \alpha_n}} \right)$

· Manipulate the FOCs to get

$$\begin{aligned} k_{it} &= (e^{Z_{it}})^{\frac{1}{1-\alpha_k-\alpha_n}} \left(\frac{\alpha_k}{r_t}\right)^{\alpha_k} \left(\frac{\alpha_n}{w_t}\right)^{1-\alpha_k} \\ n_{it} &= (e^{Z_{it}})^{\frac{1}{1-\alpha_k-\alpha_n}} \left(\frac{\alpha_k}{r_t}\right)^{1-\alpha_n} \left(\frac{\alpha_n}{w_t}\right)^{\alpha_n} \\ y_{it} &= (e^{Z_{it}})^{\frac{1}{1-\alpha_k-\alpha_n}} \left(\frac{\alpha_k}{r_t}\right)^{\frac{\alpha_k}{1-\alpha_k-\alpha_n}} \left(\frac{\alpha_n}{w_t}\right)^{\frac{\alpha_n}{1-\alpha_k-\alpha_n}} \end{aligned}$$

Claim: aggregates Y_t , K_t , and N_t are same with representative firm

$$Y_t = e^{Z_t} K_t^{\alpha_k} N_t^{\alpha_n}$$
 with $Z_t = \log \left(\int (e^{Z_{it}})^{\frac{1}{1 - \alpha_k - \alpha_n}} \right)$

· Aggregate to get

$$K_{t} = \int k_{it} di = e^{Z_{t}} \left(\frac{\alpha_{k}}{r_{t}}\right)^{\alpha_{k}} \left(\frac{\alpha_{n}}{w_{t}}\right)^{1-\alpha_{k}}$$

$$N_{t} = \int n_{it} di = e^{Z_{t}} \left(\frac{\alpha_{k}}{r_{t}}\right)^{1-\alpha_{n}} \left(\frac{\alpha_{n}}{w_{t}}\right)^{\alpha_{n}}$$

$$Y_{t} = \int y_{it} di = e^{Z_{t}} \left(\frac{\alpha_{k}}{r_{t}}\right)^{\frac{\alpha_{k}}{1-\alpha_{k}-\alpha_{n}}} \left(\frac{\alpha_{n}}{w_{t}}\right)^{\frac{\alpha_{n}}{1-\alpha_{k}-\alpha_{n}}}$$

→ Same choices as the representative firm!

Constant Returns, $\alpha_k + \alpha_n = 1$

Claim: aggregates Y_t , K_t , and N_t are same with representative firm

$$Y_t = e^{Z_t} K_t^{\alpha_k} N_t^{\alpha_n}$$
 with $Z_t = \max_i z_{it}$

Constant Returns, $\alpha_k + \alpha_n = 1$

Claim: aggregates Y_t , K_t , and N_t are same with representative firm

$$Y_t = e^{Z_t} K_t^{\alpha_k} N_t^{\alpha_n}$$
 with $Z_t = \max_i Z_{it}$

With constant returns, scale of production not pinned down:

$$y_{it} = e^{z_{it}} \left(\frac{\alpha_k}{1 - \alpha_k} \frac{w_t}{r_t} \right)^{\alpha_k} n_{it}$$

→ wage must adjust so highest productivity firm indifferent

Constant Returns, $\alpha_k + \alpha_n = 1$

Claim: aggregates Y_t , K_t , and N_t are same with representative firm

$$Y_t = e^{Z_t} K_t^{\alpha_k} N_t^{\alpha_n}$$
 with $Z_t = \max_i Z_{it}$

With constant returns, scale of production not pinned down:

$$y_{it} = e^{z_{it}} \left(\frac{\alpha_k}{1 - \alpha_k} \frac{w_t}{r_t} \right)^{\alpha_k} n_{it}$$

- → wage must adjust so highest productivity firm indifferent
- Need curvature in revenue function for non-degenerate size distribution

Plan for this Topic

1. Document large and persistent dispersion of firms' productivity

2. Show benchmark irrelevance result: without frictions to inputs, economy still has representative firm

Measure input frictions using reduced form "misallocation" measures

- · Substantial frictions at micro-level
- Implies large aggregate effects

- Heterogeneous firms aggregate when they equalize their marginal products
 - · All firms equivalent on the margin

- Heterogeneous firms aggregate when they equalize their marginal products
 - · All firms equivalent on the margin
- Misallocation literature asks:
 - 1. How disperse are marginal products across firms in the data?
 - Significant dispersion: SD \approx 50%

- Heterogeneous firms aggregate when they equalize their marginal products
 - · All firms equivalent on the margin
- Misallocation literature asks:
 - 1. How disperse are marginal products across firms in the data?
 - Significant dispersion: SD ≈ 50%
 - 2. Do these differences matter for aggregate output?
 - TFP gains from equalizing marginal products $\approx 75\%$

- Heterogeneous firms aggregate when they equalize their marginal products
 - · All firms equivalent on the margin
- Misallocation literature asks:
 - 1. How disperse are marginal products across firms in the data?
 - Significant dispersion: SD $\approx 50\%$
 - 2. Do these differences matter for aggregate output?
 - TFP gains from equalizing marginal products $\approx 75\%$
- Large differences across countries: TFP gains 40% in US vs. 130% in India

Consider production side of economy in time *t* with:

Consider production side of economy in time *t* with:

• Heterogeneous firms $i \in [0, 1]$ produce differentiated good

$$y_{it} = e^{z_{it}} k_{it}^{\alpha} n_{it}^{\alpha}$$

Consider production side of economy in time *t* with:

• Heterogeneous firms $i \in [0, 1]$ produce differentiated good

$$y_{it} = e^{z_{it}} k_{it}^{\alpha} n_{it}^{\alpha}$$

- Representative final good producer $Y_t = \left(\int y_{it}^{\frac{\sigma-1}{\sigma}} di\right)^{\frac{\sigma}{\sigma-1}}$
 - Firm *i* monopolistic competitor with CES demand curve $\left(\frac{p_{it}}{P_t}\right)^{-\sigma} Y_t$
 - Alternative way to generate curvature in revenue function

Consider production side of economy in time *t* with:

• Heterogeneous firms $i \in [0, 1]$ produce differentiated good

$$y_{it} = e^{z_{it}} k_{it}^{\alpha} n_{it}^{\alpha}$$

- Representative final good producer $Y_t = \left(\int y_{it}^{\frac{\sigma-1}{\sigma}} di\right)^{\frac{\upsilon}{\sigma-1}}$
 - Firm *i* monopolistic competitor with CES demand curve $\left(\frac{p_{it}}{P_t}\right)^{-\sigma} Y_t$
 - Alternative way to generate curvature in revenue function
- Idiosyncratic distortions to factor prices: $(1 + \tau_{it}^n)w_t$ and $(1 + \tau_{it}^k)r_t$
 - au_{it}^n : hiring costs, regulations, search frictions, ...
 - au_{it}^{k} : adjustment costs, financial constraints, ...

Firm Behavior Given Wedges

Optimal input choices:

$$\underbrace{\alpha\left(\frac{\sigma-1}{\sigma}\right)\frac{p_{it}y_{it}}{k_{it}}}_{\text{MRPK}_{it}} = (1+\tau_{it}^{k})r_{t}$$

$$\underbrace{(1-\alpha)\left(\frac{\sigma-1}{\sigma}\right)\frac{p_{it}y_{it}}{n_{it}}}_{\text{MRPL}_{it}} = (1+\tau_{it}^{n})w_{t}$$

 $o au_{it}^n$ and au_{it}^k : how much firms do not equalize marginal products

Firm Behavior Given Wedges

· Optimal input choices:

$$\underbrace{\alpha\left(\frac{\sigma-1}{\sigma}\right)\frac{p_{it}y_{it}}{k_{it}}}_{\text{MRPK}_{it}} = (1+\tau_{it}^{k})r_{t}$$

$$\underbrace{(1-\alpha)\left(\frac{\sigma-1}{\sigma}\right)\frac{p_{it}y_{it}}{n_{it}}}_{\text{MRPL}_{it}} = (1+\tau_{it}^{n})w_{t}$$

 $\rightarrow au_{it}^n$ and au_{it}^k : how much firms do not equalize marginal products

Output:

$$y_{it} = \left(\left(\frac{\sigma - 1}{\sigma} \right) \frac{e^{Z_{it}}}{\left(\frac{(1 + \tau_{it}^k) r_t}{\alpha} \right)^{\alpha} \left(\frac{(1 + \tau_{it}^n) w_t}{1 - \alpha} \right)^{1 - \alpha}} \right)^{\sigma}$$

Aggregation

After a lot of algebra (don't worry about it):

$$Y_t = (T_t^p)^{\frac{\sigma}{\sigma-1}} (T_t^k)^{\alpha} (T_t^n)^{1-\alpha} K_t^{\alpha} N_t^{1-\alpha}$$
, where

$$T_{t}^{p} = \left(\int \left(\frac{(1 + \tau_{it}^{k})^{\alpha} (1 + \tau_{it}^{n})^{1 - \alpha}}{e^{z_{it}}} \right)^{1 - \sigma} di \right)^{-1}$$

$$T_{t}^{n} = \left(\int \left(\frac{(1 + \tau_{it}^{k})^{\alpha} (1 + \tau_{it}^{n})^{-\alpha}}{e^{z_{it}}} \right)^{1 - \sigma} \frac{1}{1 + \tau_{it}^{n}} di \right)^{-1}$$

$$T_{t}^{k} = \left(\int \left(\frac{(1 + \tau_{it}^{k})^{\alpha - 1} (1 + \tau_{it}^{n})^{1 - \alpha}}{e^{z_{it}}} \right)^{1 - \sigma} \frac{1}{1 + \tau_{it}^{k}} di \right)^{-1}$$

Aggregation

After a lot of algebra (don't worry about it):

$$Y_t = (T_t^p)^{\frac{\sigma}{\sigma-1}} (T_t^k)^{\alpha} (T_t^n)^{1-\alpha} K_t^{\alpha} N_t^{1-\alpha}$$
, where

$$T_{t}^{p} = \left(\int \left(\frac{(1 + \tau_{it}^{k})^{\alpha} (1 + \tau_{it}^{n})^{1 - \alpha}}{e^{z_{it}}} \right)^{1 - \sigma} di \right)^{-1}$$

$$T_{t}^{n} = \left(\int \left(\frac{(1 + \tau_{it}^{k})^{\alpha} (1 + \tau_{it}^{n})^{-\alpha}}{e^{z_{it}}} \right)^{1 - \sigma} \frac{1}{1 + \tau_{it}^{n}} di \right)^{-1}$$

$$T_{t}^{k} = \left(\int \left(\frac{(1 + \tau_{it}^{k})^{\alpha - 1} (1 + \tau_{it}^{n})^{1 - \alpha}}{e^{z_{it}}} \right)^{1 - \sigma} \frac{1}{1 + \tau_{it}^{k}} di \right)^{-1}$$

Compare distribution of wedges in data vs. no wedges

$$(1 + \tau_{it}^{k}) = \frac{\mathsf{MRPK}_{it}}{r_{t}} = \frac{1}{r_{t}} \times \alpha \left(\frac{\sigma - 1}{\sigma}\right) \frac{p_{it}y_{it}}{k_{it}}$$

$$(1 + \tau_{it}^{n}) = \frac{\mathsf{MRPL}_{it}}{w_{t}} = \frac{1}{w_{t}} \times (1 - \alpha) \left(\frac{\sigma - 1}{\sigma}\right) \frac{p_{it}y_{it}}{n_{it}}$$

$$e^{Z_{it}} = \frac{y_{it}}{k_{it}^{\alpha}n_{it}^{1 - \alpha}} = \frac{(p_{it}y_{it})^{\frac{\sigma - 1}{\sigma}}}{k_{it}^{\alpha}n_{it}^{1 - \alpha}}$$

$$(1 + \tau_{it}^{k}) = \frac{\mathsf{MRPK}_{it}}{r_{t}} = \frac{1}{r_{t}} \times \alpha \left(\frac{\sigma - 1}{\sigma}\right) \frac{p_{it}y_{it}}{k_{it}}$$

$$(1 + \tau_{it}^{n}) = \frac{\mathsf{MRPL}_{it}}{w_{t}} = \frac{1}{w_{t}} \times (1 - \alpha) \left(\frac{\sigma - 1}{\sigma}\right) \frac{p_{it}y_{it}}{n_{it}}$$

$$e^{Z_{it}} = \frac{y_{it}}{k_{it}^{\alpha}n_{it}^{1 - \alpha}} = \frac{(p_{it}y_{it})^{\frac{\sigma - 1}{\sigma}}}{k_{it}^{\alpha}n_{it}^{1 - \alpha}}$$

Want to infer wedges and productivity from data

$$(1 + \tau_{it}^{k}) = \frac{\mathsf{MRPK}_{it}}{r_{t}} = \frac{1}{r_{t}} \times \alpha \left(\frac{\sigma - 1}{\sigma}\right) \frac{p_{it}y_{it}}{k_{it}}$$

$$(1 + \tau_{it}^{n}) = \frac{\mathsf{MRPL}_{it}}{w_{t}} = \frac{1}{w_{t}} \times (1 - \alpha) \left(\frac{\sigma - 1}{\sigma}\right) \frac{p_{it}y_{it}}{n_{it}}$$

$$e^{Z_{it}} = \frac{y_{it}}{k_{it}^{\alpha}n_{it}^{1 - \alpha}} = \frac{(p_{it}y_{it})^{\frac{\sigma - 1}{\sigma}}}{k_{it}^{\alpha}n_{it}^{1 - \alpha}}$$

Plant level data from Census of Manufactures

- Revenue $p_{it}y_{it}$ is nominal value added
- Capital k_{it} is book value of capital stock
- Labor n_{it} is wage bill of the plant

$$(1 + \tau_{it}^{k}) = \frac{\mathsf{MRPK}_{it}}{r_{t}} = \frac{1}{r_{t}} \times \alpha \left(\frac{\sigma - 1}{\sigma}\right) \frac{p_{it}y_{it}}{k_{it}}$$

$$(1 + \tau_{it}^{n}) = \frac{\mathsf{MRPL}_{it}}{w_{t}} = \frac{1}{w_{t}} \times (1 - \alpha) \left(\frac{\sigma - 1}{\sigma}\right) \frac{p_{it}y_{it}}{n_{it}}$$

$$e^{z_{it}} = \frac{y_{it}}{k_{it}^{\alpha}n_{it}^{1 - \alpha}} = \frac{(p_{it}y_{it})^{\frac{\sigma - 1}{\sigma}}}{k_{it}^{\alpha}n_{it}^{1 - \alpha}}$$

Remaining quantities are calibrated

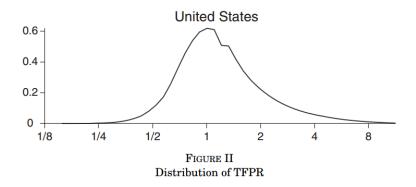
- Rental rate on capital $r_t = 10\%$
- Elasticity of substitution $\sigma = 3$
- Capital share α as 1 labor share
- NB: actual implementation in paper complicated by sectoral heterogeneity

Dispersion in TFPQ in Line with Literature

TABLE I DISPERSION OF TFPQ

China	1998	2001	2005
S.D.	1.06	0.99	0.95
75 - 25	1.41	1.34	1.28
90 - 10	2.72	2.54	2.44
N	95,980	108,702	211,304
India	1987	1991	1994
S.D.	1.16	1.17	1.23
75 - 25	1.55	1.53	1.60
90 - 10	2.97	3.01	3.11
N	31,602	37,520	41,006
United States	1977	1987	1997
S.D.	0.85	0.79	0.84
75 - 25	1.22	1.09	1.17
90 - 10	2.22	2.05	2.18
N	164,971	173,651	194,669

Marginal Products Very Disperse



$$\mathsf{TFPR}_{it} = \frac{p_{it}y_{it}}{k_{it}^{\alpha}n_{it}^{1-\alpha}} = (\mathsf{MPRK}_{it})^{\alpha}(\mathsf{MRPL}_{it})^{1-\alpha}$$

Marginal Products More Disperse in India and China

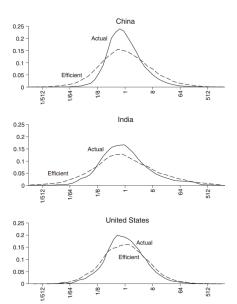
TABLE II DISPERSION OF TFPR

1998	2001	2005
0.74	0.68	0.63
0.97	0.88	0.82
1.87	1.71	1.59
1987	1991	1994
0.69	0.67	0.67
0.79	0.81	0.81
1.73	1.64	1.60
1977	1987	1997
0.45	0.41	0.49
0.46	0.41	0.53
1.04	1.01	1.19
	0.74 0.97 1.87 1987 0.69 0.79 1.73 1977	0.74 0.68 0.97 0.88 1.87 1.71 1987 1991 0.69 0.67 0.79 0.81 1.73 1.64 1977 1987 0.45 0.41 0.46 0.41

Large Gains From Equalizing Marginal Products

China	1998	2001	2005
%	115.1	95.8	86.6
India	1987	1991	1994
%	100.4	102.1	127.5
United States	1977	1987	1997
%	36.1	30.7	42.9

Efficient vs. Actual Size Distribution



- Large dispersion in productivity across firms
 - Measurement involves many choices
 - But no matter how you do it, always large dispersion

- Large dispersion in productivity across firms
 - Measurement involves many choices
 - But no matter how you do it, always large dispersion
- Even with heterogeneity, representative firm exists if can adjust inputs frictionlessly
 - Firms equalize marginal products to factor prices
 - Every firm is the same on the margin

- Large dispersion in productivity across firms
 - Measurement involves many choices
 - But no matter how you do it, always large dispersion
- Even with heterogeneity, representative firm exists if can adjust inputs frictionlessly
 - Firms equalize marginal products to factor prices
 - Every firm is the same on the margin
- Misallocation literature provides evidence that world is far away from representative firm
 - Reduced-form wedges indicate firms far away from equal marginal products
 - Dispersion in wedges matters for aggregate outcomes

- Large dispersion in productivity across firms
 - Measurement involves many choices
 - But no matter how you do it, always large dispersion
- Even with heterogeneity, representative firm exists if can adjust inputs frictionlessly
 - Firms equalize marginal products to factor prices
 - Every firm is the same on the margin
- Misallocation literature provides evidence that world is far away from representative firm
 - Reduced-form wedges indicate firms far away from equal marginal products
 - Dispersion in wedges matters for aggregate outcomes
- ⇒ The rest of the course is figuring out what these wedges are

The Rest of the Course

Topic 2: Investment and capital adjustment costs

- Firms' investment decisions are lumpy
- What kinds of frictions do we need to account for these patterns?
- What are the implications for aggregate dynamics?
- Aside: how do we solve models with heterogeneity?

The Rest of the Course

Topic 2: Investment and capital adjustment costs

- · Firms' investment decisions are lumpy
- · What kinds of frictions do we need to account for these patterns?
- · What are the implications for aggregate dynamics?
- Aside: how do we solve models with heterogeneity?

Topic 3: Financial frictions

- Many decisions depend on firms' financial health
- What kinds of financial frictions fit the data best?
- What are the implications for aggregate dynamics?

The Rest of the Course

Topic 2: Investment and capital adjustment costs

- · Firms' investment decisions are lumpy
- · What kinds of frictions do we need to account for these patterns?
- What are the implications for aggregate dynamics?
- Aside: how do we solve models with heterogeneity?

Topic 3: Financial frictions

- Many decisions depend on firms' financial health
- What kinds of financial frictions fit the data best?
- What are the implications for aggregate dynamics?

Topic 4: Entry, exit, and firms' lifecycles

- How do firms enter, grow, and die?
- What are the implications for aggregate dynamics?