
Online Appendix for “Lumpy Investment, Business Cycles, and
Stimulus Policy” by Thomas Winberry

I. Proof of Proposition 1

Consider the optimization problem of a firm j choosing capital accumulation
kjt+1 in period t. Conditional on paying the fixed cost ξ, the choice kjt+1 affects
the discounted value of the firm’s profits through the terms

−kjt+1 +
1

1 + rt

(
zt+1E[εjt+1|εjt]kαjt+1 + (1− δ)kjt+1

)
.

First consider the limiting case α = 1 and ξ = 0; I will discuss convergence to
this limit below. In this limiting case, the expression becomes

(1)
[

1

1 + rt
(zt+1E[εjt+1|εjt] + (1− δ))− 1

]
kjt+1.

Since the expression (1) is linear in capital accumulation kjt+1, the optimal policy
of the firm is to set kjt+1 = 0 if 1

1+rt
(zt+1E[εjt+1|εjt] + (1− δ)) − 1 < 0, set

kjt+1 → ∞ if 1
1+rt

(zt+1E[εjt+1|εjt] + (1− δ)) − 1 > 0, and can be any kjt+1 ∈
[0,∞) otherwise.

General equilibrium requires that the firm with the highest expected future
productivity earns zero variable profits, i.e.

(2) 1 + rt = (1− δ) + zt+1ε̃.

If 1+rt < (1−δ)+zt+1ε̃, then the firms with E[εjt+1|εjt] = ε̃ would strictly prefer
to let kjt+1 → ∞, violating the finite resource constraint.1 If 1+rt > (1−δ)+zt+1ε̃,
then no firms would find it profitable to invest, which would imply Ct+1 = 0 and
violate the consumer’s Inada condition.

Condition (2) implies that only firms for which E[εjt+1|εjt] = ε̃ will accumulate
capital for the next period; all other firms have strictly lower expected produc-
tivity and therefore set kjt+1 = 0. The choice kjt+1 = Kt+1

µ is optimal for the
active firms, where µ is the mass of firms with E[εjt+1|εjt] = ε̃ and Kt+1 is the
aggregate capital accumulation implied by the household’s Euler equation

C−σ
t = β (zt+1ε̃+ 1− δ)C−σ

t+1.

Aggregate output in period t+1 is therefore Yt+1 = zt+1ε̃Kt+1. Hence, aggregate
outcomes are identical to a representative firm with production function Yt+1 =

1Note that there is a positive mass of such firms because εjt has finite support.

1
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zt+1ε̃Kt+1. Note that average productivity among active firms in period t+ 1 is
ε̃ by the law of large numbers.

Now consider the general firm’s problem with α < 1 and ξ > 0. Following
the statement of the proposition, let k∗jt(α) be the optimal policy of a firm with
productivity ε̃, conditional on paying the fixed cost. Further denote the mass of
these firms by µt, which may be time-varying depending on how many pay the
fixed costs. Finally, let

π∗
t (α) = −k∗t (α) +

1

1 + rt
(zt+1ε̃k

∗
t (α)

α + (1− δ)k∗t (α))

be the contribution of the capital choice to the value of the firm’s discounted
profits, net of the fixed cost ξ(α).

Now consider the limit as α → 1. The optimal policy k∗jt(α) will converge to
the optimal policy with α = 1 if the fixed cost does not outweigh flow profits,
i.e., ξ ≤ π∗

t (α). Since π∗
t (α) → 0 as α → 1, this requires ξ → 0. Hence, by the

same logic as above, in the limit it must be that rt+ δ → zt+1ε̃ to ensure that the
finite resource constraint of the economy is respected. Since active firms will be
indifferent, the choice Kt+1

µt
will be optimal, and aggregate output will be given

by Yt = µt × zt+1ε̃
Kt+1

µt
= zt+1ε̃Kt+1.

II. Data

A. Data Sources and Variable Definitions

I use the following data in the empirical analysis:
• Bureau of Economic Analysis: Fixed Assets Table 1.1 Annual (Bureau of

Economic Analysis, 1947-2016c).

• Bureau of Economic Analysis: Fixed Assets Table 1.3 Annual (Bureau of
Economic Analysis, 1947-2016d).

• Bureau of Economic Analysis: Domestic Product and Income Table 1.1.5
Annual (Bureau of Economic Analysis, 1947-2016a).

• Bureau of Economic Analysis: Domestic Product and Income Table 1.1.5
Quarterly (Bureau of Economic Analysis, 1947q1-2016q4).

• Bureau of Economic Analysis: Domestic Product and Income Table 1.1.9
Quarterly (Bureau of Economic Analysis, 1947-2016b).

• Federal Reserve Bank of San Francisco Total Factor Productivity Series
(Federal Reserve Bank of San Francisco, 1947q1-2016q4).

• Board of Governors of the Federal Reserve System: 3-Month Treasury Bill
Secondary Market Rate (Board of Governors of the Federal Reserve System,
1954q1-2016q4).
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• U.S. Bureau of Labor Statistics: Consumer Price Index for All Urban Con-
sumers All Items in U.S. City Average (U.S. Bureau of Labor Statistics,
1954q1-2016q4a).

• Riccardo Dicecio: Relative Price of Investment Goods (DiCecio, 1954q1-
2016q4).

• U.S. Bureau of Labor Statistics: Nonfarm Business Sector Hours of All
Persons (U.S. Bureau of Labor Statistics, 1954q1-2016q4c).

• U.S. Bureau of Labor Statistics: Unemployment Rate (U.S. Bureau of Labor
Statistics, 1954q1-2016q4d).

• U.S. Bureau of Labor Statistics: Consumer Price Index for All Urban Con-
sumers All Items Less Food and Energy in U.S. City Average (U.S. Bureau
of Labor Statistics, 1957q2-2016q4b).

I construct the variables used in the empirical analysis as follows:

• Real interest rate rt: 400
(
1+rnom

t
1+πt+1

− 1
)

, where rnom
t is the average yield on

90-day Treasury bills (FRED series DTB3) and πt+1 is realized CPI inflation
(FRED series CPIAUSCL).

• Relative price of investment goods qt: constructed by Riccardo DeCicio
(FRED series PIRIC).

• Real GDP Yt: nominal GDP, quarterly (NIPA Table 1.1.5) divided by GDP
deflator (NIPA Table 1.1.9).

• Real consumption Ct: nominal expenditures on consumption goods (NIPA
Table 1.1.5) divided by implicit price deflator (NIPA Table 1.1.9) plus nom-
inal expenditures on services (NIPA Table 1.1.5) divided by implicit price
deflator (NIPA Table 1.1.9). Converted each to 2009q1 dollars so units are
comparable.

• Real investment It: nominal expenditures on nonresidential fixed investment
(NIPA Table 1.1.5) divided by implicit price deflator (NIPA Table 1.1.9).

• Hours worked Nt: hours of all persons in nonfarm business sector (FRED
series HOANBS).

• Total factor productivity zt: downloaded from FRBSF database
https://www.frbsf.org/economic-research/indicators-data/total-factor-productivity-tfp/
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Table 1—Cyclical Behavior of Risk-Free Rate, Core CPI Inflation

σ(rt) ρ(rt, yt) ρ(rt, zt)
Whole sample 1.21% 0.09 −0.05
(p-value) (0.17) (0.41)
No Volcker 1.01% 0.26∗∗∗ 0.01

(0.00) (0.86)
Pre-1983 1.50% −0.09 0.05

(0.34) (0.63)
Post-1983 0.92% 0.46∗∗∗ −0.23∗∗∗

(0.00) (0.01)

Notes: real interest rate measured as the return on 90-day Treasury bills adjusted for core CPI
inflation, expressed in annual percentage points. Output measured as real GDP. TFP measured as the
aggregate Solow residual. All variables have been HP-filtered and expressed as percentage deviation
from an HP trend. “Whole sample” refers to the 1954q1 - 2016q4 time series. “No Volcker” excludes
1979q1 - 1983q4. “Pre-1983” refers to the 1954q1-1982q4 sample. “Post-1983” refers to the
1983q1-2016q4 sample.

B. Robustness of Empirical Results

I perform four robustness checks on the empirical results in Table 1. First, I
show in Table 1 that the main empirical results hold when I use core CPI rather
than headline CPI to correct for inflation. Second, I show in Table 2 that the
results hold when inflation expectations are computed from a VAR (rather than
realized inflation as in the main text).2 Third, I show in Figure 1 that the impulse
response of this ex-ante real interest rate to a TFP shock is similar to the response
of the ex-post real interest rate presented in the main text. Fourth, I show in
Table 3 that the results hold when I detrend the data using a linear trend, a
bandpass filter, or first differences.

III. Benchmark Real Business Cycle Model

There is a representative firm with production function Yt = ZtK
α
t N

1−α
t , where

Zt is aggregate productivity, Kt is the aggregate capital stock, and Nt is la-
bor supply. Aggregate productivity Zt follows the log-AR(1) process logZt =
ρ logZt−1 + ωt, where ωt ∼ N(0, σ2

z). There is a representative household which
has separable preferences over consumption Ct and labor supply Nt represented
by the expected utility function E

∑∞
t=0 β

t
(
C1−σ

t
1−σ − χ

N1+η
t
1+η

)
, where χ controls the

disutility of labor supply and the 1/η is the Frisch elasticity.

2The VAR contains four lags of inflation, output growth, consumption growth, investment growth,
and unemployment.
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Table 2—Cyclical Behavior of Risk-Free Rate, VAR Inflation Expectations

σ(rt) ρ(rt, yt) ρ(rt, zt)
Whole sample 1.19% 0.01 −0.13∗∗

(p-value) (0.91) (0.04)
No Volcker 1.07% 0.12∗ −0.11∗

(0.07) (0.10)
Pre-1983 1.16% −0.06 0.06

(0.55) (0.54)
Post-1983 1.21% 0.09 −0.34∗∗∗

(0.30) (0.00)

Notes: real interest rate measured as the return on 90-day Treasury bills adjusted for inflation
expectations from a VAR, expressed in annual percentage points. The VAR contains four lags of
inflation, output growth, consumption growth, investment growth, and unemployment. Output
measured as real GDP. TFP measured as the aggregate Solow residual. All variables have been
HP-filtered and expressed as percentage deviation from an HP trend. “Whole sample” refers to the
1954q1 - 2016q4 time series. “No Volcker” excludes 1979q1 - 1983q4. “Pre-1983” refers to the
1954q1-1982q4 sample. “Post-1983” refers to the 1983q1-2016q4 sample.

Table 3—Cyclical Behavior of Risk-Free Rate, Different Filters

σ(rt) ρ(rt, yt) ρ(rt, zt)
HP filter 1.73% −0.11∗ −0.20∗∗∗

(p-value) (0.09) (0.00)
Linear trend 2.58% 0.15∗∗ −0.14∗∗

(0.02) (0.02)
Bandpass 1.22% −0.18∗∗∗ −0.34∗∗∗

(0.01) (0.00)
First differences 2.58% 0.06 0.05

(0.39) (0.45)

Notes: real interest rate measured as the return on 90-day Treasury bills adjusted for realized CPI
inflation, expressed in annual percentage points. Output measured as real GDP. TFP measured as the
aggregate Solow residual. All variables have been HP-filtered and expressed as percentage deviation
from an HP trend. “HP filter” refers to detrending all variables using an HP filter. “Linear trend”
refers to removing a linear trend from output and TFP. “Bandpass” refers to removing a bandpass filter
from all variables with minimum periodicity of 6 quarters and maximum periodicity of 32 quarters.
“First differences” refers to expressing output and TFP in log-differences. All statistics are computed
over the 1954q1-2016q4 sample.
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Figure 1. Impulse Response of the Ex-Ante Real Interest Rate to TFP Shock

Notes: impulse response of the real interest rate to a TFP shock identified from a bivariate VAR with
TFP ordered first. Lag length of 3 chosen by the AIC. Real interest rate measured as the nominal
return on 90-day treasury bills adjusted for expected inflation. Expected inflation computed using a
VAR with four lags of inflation, output growth, consumption growth, investment growth, and
unemployment. “RBC theoretical” refers to the theoretical impulse response. “RBC measured” refers
to the impulse response identified using the VAR estimation on simulated data from the model.
“Empirical (90% CI)” refers to the empirical impulse response and 90% error bands.

A model period is one quarter, so I set the discount factor β = 0.99. I set the
elasticity of intertemporal substitution 1/σ = 1 and the Frisch elasticity of labor
supply 1/η = 2. I choose the disutility of labor supply χ to ensure that steady
state hours worked is 1/3 of available time. I set the labor share 1−α = 0.64 and
the depreciation rate of capital δ = 0.025. I set the process for aggregate TFP to
the standard values ρ = 0.95 and σz = 0.007.

I solve the RBC model using a second-order perturbation implemented in
Dynare. As I describe in Appendix V, I also solve for the aggregate dynam-
ics of the heterogeneous firm model using a second-order perturbation in Dynare.

IV. Characterizing Equilibrium

In this Appendix I characterize the recursive competitive equilibrium defined in
Section II.D. I use this characterization to numerically compute the equilibrium
in Appendix V. For the sake of generality, I allow firms that do not pay the fixed
cost to choose any investment i ∈ [−ak, ak]. The main text sets a = 0.

Firm’s Decision Problem

I begin by simplifying the firm’s decision problem in a series of three proposi-
tions. These propositions eliminate two individual state variables, which greatly
simplifies the numerical approximation.
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For ease of notation, define after-tax revenue net of tax writeoffs:

π (ε, k; s) = max
n

{
(1− τ)

(
zεkθnν − w(s)n

)}
By construction, this object does not depend on current depreciation allowances
d or the fixed adjustment cost ξ.

I begin by proving Proposition 2 in the main text. This proposition shows
that the firm’s value function v(ε, k, d, ξ; s) is linear in the pre-existing stock of
depreciation allowances d. I exploit this property in the other propositions to
simplify the decision rules. For ease of reading, I restate the proposition below:
PROPOSITION 1: The firm’s value function is of the form v(ε, k, d, ξ; s) =

v1(ε, k, ξ; s) + τPV (s)d where PV (s) is defined by the recursion PV (s) = δ̂ +(
1− δ̂

)
E [Λ(z′; s)PV (s′)]. Furthermore, v1(ε, k, ξ; s) is defined by the Bellman

equation

(3) v1(ε, k, ξ; s) = π (ε, k; s) + max
i

{
− (1− τPV (s)) i− φ

2

(
i
k

)2
k − ξw(s)1 {i /∈ [−ak, ak]}

+E[Λ(z′; s)v1 (ε′, (1− δ) k + i, ξ′; s′)]

}
PROOF:

First, I show that the value function is of the form v(ε, k, d, ξ; s) = v1(ε, k, ξ; s)+
τPV (s)d for some function v1(ε, k, ξ; s). I begin by showing that the operator
T defined by the right hand side of the Bellman equation maps functions of the
form f(ε, k, ξ; s) + τPV (s)d into functions of the form g(ε, k, ξ; s) + τPV (s)d.
Applying T to f , we get:

T (f)(ε, k, ξ; s) = π(ε, k; s) + τ δ̂d

+max
i

{
−
(
1− τ δ̂

)
i− φ

2

(
i
k

)2
k − ξw(s)1 {i /∈ [−ak, ak]}

+E[Λ(z′; s)(f(ε′, (1− δ)k + i, ξ′; s′) + τPV (s)(1− δ̂)(d+ i))]

}

Collecting terms,

T (f)(ε, k, ξ; s) = π(ε, k; s) + τ
(
δ̂ + (1− δ̂)E[Λ(z′; s)PV (s′)]

)
d(4)

+max
i

{
−
(
1− τ δ̂ − τ(1− δ̂)E[Λ(z′; s)PV (s′)]

)
i− φ

2

(
i
k

)2
k

−ξw(s)1 {i /∈ [−ak, ak]}+ E[Λ(z′; s)f(ε′, (1− δ)k + i, ξ′; s′)]

}

By the definition of PV (s), we have that

τ
(
δ̂ + (1− δ̂)E[Λ(z′; s)PV (s′)]

)
d = τPV (s)

−
(
1− τ δ̂ − τ(1− δ̂)E[Λ(z′; s)PV (s′)]

)
i = − (1− τPV (s)) i

Plugging this back into (4) and rearranging gives
T (f)(ε, k, ξ; s) = τPV (s)d+

π(ε, k; s) + max
i

{
− (1− τPV (s)) i− φ

2

(
i
k

)2
k − ξw(s)1 {i /∈ [−ak, ak]}

+E[Λ(z′; s)f (ε′, (1− δ) k + i, ξ′; s′)]

}
︸ ︷︷ ︸

g(ε,k,ξ;s)
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which is of the form τPV (s)d+g(ε, k, ξ; s). Hence, T maps functions of the form
τPV (s)d+ f(ε, k, ξ; s) into functions of the form τPV (s)d+ g(ε, k, ξ; s). This is
a closed set of functions, so by the contraction mapping theorem, the fixed point
of T must lie in this set as well. Since the fixed point of T is the value function,
this establishes that v(ε, k, d, ξ; s) = v1(ε, k, ξ; s) + τPV (s)d.

To derive the form of v1(ε, k, ξ; s), plug v(ε, k, d, ξ; s) = v1(ε, k, ξ; s) + τPV (s)d
into both sides of the Bellman equation to get

v1(ε, k, ξ; s) + τPV (s)d = π(ε, k; s) + τ δ̂d+

max
i

{
−
(
1− τ δ̂

)
i− φ

2

(
i
k

)2
k − ξw(s)1 {i /∈ [−ak, ak]}

+E[Λ(z′; s)(v1(ε′, (1− δ)k + i, ξ′; s′) + τPV (s)(1− δ̂)(d+ i))]

}

Rearranging terms as before shows that
v1(ε, k, ξ; s) + τPV (s)d = π (ε, k; s) + τPV (s)d+

max
i

{
− (1− τPV (s)) i− φ

2

(
i
k

)2
k − ξw(s)1 {i /∈ [−ak, ak]}

+E[Λ(z′; s)v1 (ε′, (1− δ) k + i, ξ′; s′)]

}
Subtracting τPV (s)d from both sides establishes (3).

The above proposition shows that the depreciation allowances d do not interact
with the other state variables of the firm. The next proposition shows that this
implies that investment decisions do not depend on d. To ease notation, I first
define the ex ante value function:

v0 (ε, k; s) =

∫ ξ

0
v1(ε, k, ξ; s)

1

ξ
dξ.

PROPOSITION 2: The investment decision rule is independent of d and given
by

i(ε, k, ξ; s) =

{
ia (ε, k; s) if ξ ≤ ξ̂ (ε, k; s)

in (ε, k; s) if ξ > ξ̂ (ε, k; s)

}
where

ia (ε, k; s) = argmax
i

− (1− τPV (s)) i−φ

2

(
i

k

)2

k+E[Λ(z′; s)v0
(
ε′, (1− δ) k + i; s′

)

in (ε, k; s) =

 ak if ia (ε, k; s) > ak
ia (ε, k; s) if ia (ε, k; s) ∈ [−ak, ak]

−ak if ia (ε, k; s) < −ak



ξ̂ (ε, k; s) =
1

w(s)
×


− (1− τPV (s))(ia (ε, k; s)− in (ε, k; s))

−φ
2

((
ia(ε,k;s)

k

)2
−
(
in(ε,k;s)

k

)2)
k

+E[Λ(z′; s)(v0 (ε′, (1− δ) k + ia (ε, k; s) ; s′)
−v0 (ε′, (1− δ) k + in (ε, k; s) ; s′))]


PROOF:
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The form of ia(ε, k; s) follows directly from the Bellman equation, using the
law of iterated expectations and the fact that ξ′ is i.i.d. The form of in(ε, k; s)
also follows from the Bellman equation, which shows that the objective function
in the no-adjust problem is the same as the adjust problem and the choice set is
restricted. The form of i (ε, k, ξ; s) comes from the following argument. At ξ = 0,
the objective function of adjusting must be weakly greater than the no-adjust
problem, again because the no-adjust problem has the same objective function
as the adjust problem but has a restricted choice set. Further, the payoff of
adjusting is strictly decreasing in ξ. Therefore, there must be a cutoff rule.
Setting the adjust and no adjust payoffs equal gives the form of the threshold
ξ̂ (ε, k; s).

The above proposition shows that knowing v0(ε, k; s) is enough to derive the
decision rules. The next and final proposition defines the Bellman equation which
determines v0(ε, k; s).
PROPOSITION 3: v0(ε, k; s) solves the Bellman equation

v (ε, k; s) = π(ε, k; s)

+
ξ̂ (ε, k; s)

ξ

 − (1− τPV (s)) ia (ε, k; s)− φ
2

(
ia(ε,k;s)

k

)2
k

− ξ̂(ε,k;s)
2 w(s) + E[Λ(z′; s)v0(ε′, (1− δ)k + ia (ε, k; s) ; s′)]


+

(
1− ξ̂ (ε, k; s)

ξ

){
− (1− τPV (s)) ia (ε, k; s)− φ

2

(
in(ε,k;s)

k

)2
k

+E[Λ(z′; s)v0(ε′, (1− δ)k + in (ε, k; s) ; s′)]

}

PROOF:
This follows from integrating v0 (ε, k; s) =

∫
v1 (ε, k, ξ; s) 1

ξ
dξ, using the expres-

sion for v1 (ε, k, ξ; s) from Proposition 1 and the form of the policy function from
Proposition 2.

A Characterization of the Equilibrium

The series of propositions above show that firms’ decision rules are determined
by the alternative value function v0 (ε, k; s). I now embed this alternative value
function into a simplified characterization of the recursive competitive equilib-
rium. In addition to simplifying firms’ decisions, this characterization eliminates
household optimization by directly imposing the implications of optimization on
firm behavior through prices, as in Khan and Thomas (2008). To do so, define the
marginal utility of consumption in state s as p(s). Abusing notation, I normalize
the value function through

v(ε, k; s) = p(s)v0(ε, k; s)

This normalization leaves the decision rules unchanged and I continue to denote
them ia(ε, k; s), etc. In a final abuse of notation, I denote the distribution of firms
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over measurable sets ∆ε ×∆k as µ.

PROPOSITION 4: The recursive competitive equilibrium from Definition 1 is
characterized by a list of functions v (ε, k; s), w(s), p(s), X ′(s), and µ′(s) such
that

1) (Firm optimization) v (ε, k; s) solves the Bellman equation
v (ε, k; s) = p(s)π(ε, k; s)

+
ξ̂ (ε, k; s)

ξ

 −p(s) (1− τPV (s)) ia (ε, k; s)− p(s)φ
2

(
ia(ε,k;s)

k

)2
k

−p(s)
ξ̂(ε,k;s)

2
w(s) + βE[v (ε′, (1− δ)k + ia (ε, k; s) ; s′)]


+

(
1−

ξ̂ (ε, k; s)

ξ

){
−p(s) (1− τPV (s)) in (ε, k; s)− p(s)φ

2

(
in(ε,k;s)

k

)2
k

+βE[v (ε′, (1− δ)k + in (ε, k; s) ; s′)]

}

where ia (ε, k; s), in (ε, k; s), and ξ̂ (ε, k; s) are derived from v (ε, k; s) using

ia (ε, k; s) = argmax
i

−p(s) (1− τPV (s)) i− p(s)
φ

2

(
i

k

)2

k + βE[v
(
ε′, (1− δ) k + i; s′

)

in (ε, k; s) =

 ak if ia (ε, k; s) > ak
ia (ε, k; s) if ia (ε, k; s) ∈ [−ak, ak]

−ak if ia (ε, k; s) < −ak



ξ̂ (ε, k; s) =
1

p(s)w(s)
×


−p(s) (1− τPV (s))(ia (ε, k; s)− in (ε, k; s))

−p(s)φ2

((
ia(ε,k;s)

k

)2
−
(
in(ε,k;s)

k

)2)
k

+βE[(v (ε′, (1− δ) k + ia (ε, k; s) ; s′)
−v (ε′, (1− δ) k + in (ε, k; s) ; s′))]


and PV (s) is defined by the recursion

p(s)PV (s) = p(s)δ̂ +
(
1− δ̂

)
βE
[
p(s′)PV (s′)|s

]
.

2) (Labor market clearing)(
w(s)

χ

) 1
η

=

∫ (
n(ε, k; s) +

ξ̂ (ε, k; s)2

2ξ

)
µ (dε, dk)

where n (ε, k; s) =
(
zεkθν
w(s)

) 1
1−ν .

3) (Consistency)

p(s) =

C(s)−X(s)− χ

((
w(s)
χ

) 1
η

)1+η

1 + η


−σ
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where C(s) is derived from the decision rules by C(s) =
∫
(zεkθn(ε, k; s)ν

− i (ε, k; s) − AC(ε, k; s))µ (dε, dk) using i (ε, k; s) = ξ̂(ε,k;s)

ξ
ia (ε, k; s) +(

1− ξ̂(ε,k;s)

ξ

)
in (ε, k; s) and

AC(ε, k; s) =
ξ̂(ε, k; s)

ξ

(
φ

2

(
ia (ε, k; s)

k

)2

k

)
+

(
1−

ξ̂(ε, k; s)

ξ

)(
φ

2

(
in (ε, k; s)

k

)2

k

)
.

4) (Law of motion for habit stock)

X ′(s) = λ

C(s)− χ

((
w(s)
χ

) 1
η

)1+η

1 + η


5) (Law of motion for measure) For all measurable sets ∆ε ×∆k,

µ′(s) (∆ε ×∆k) =

∫
p(ε′ ∈ ∆ε|ε)(

ξ̂(ε, k; s)

ξ
1 {(1− δ) k + ia (ε, k; s) ∈ ∆k}+(

1− ξ̂(ε, k; s)

ξ

)
1 {(1− δ) k + in (ε, k; s) ∈ ∆k})dε′µ(dε, dk)

PROOF:
Condition (i) follows from Propositions 1 - 3, using the definition v (ε, k; s) =

p(s)v0 (ε, k; s) and noting that Λ(z′; s) = βp(s′)
p(s) . Condition (ii) follows from the

household’s FOC, the firms’ FOC, and labor market clearing. Condition (iii)
follows from output market clearing and the definition of p(s). Condition (iv)
directly reproduces conditions iv(c) and iv(d) from Section 2.4 in the main text.
Condition (v) follows from the original law of motion in condition iv(e) in the
main text, eliminating d as an individual state variable and integrating out ξ.

V. Solution Method

I solve the model using the method concurrently developed in Winberry (2018).
I provide a brief overview of the method in this appendix and refer to the inter-
ested reader to Winberry (2018) for details. Broadly, the method involves three
key steps. First, for each period t I approximate the equilibrium objects – includ-
ing the cross-sectional distribution of firms – using a finite-dimensional parametric
approximation. Second, I solve for the steady state of this discretized model in
which there are no aggregate shocks (but there are still idiosyncratic shocks).
Third, I solve for the dynamics of the discretized model by perturbing it around
this steady state.
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The main challenge in applying the method is approximating the value function
vt(ε, k) and distribution µt(ε, k) in the first step. I approximate the value function
using a weighted sum of Chebyshev polynomials, indexed by the vector of weights
θt.3 I approximate the density function of the distribution, denoted g(ε, log(k)),
using the parametric family

g (ε, log(k)) ∼= g0 exp{g11
(
ε−m1

1

)
+ g21

(
log(k)−m2

1

)
+(5)

ng∑
i=2

i∑
j=0

gji

[(
ε−m1

1

)i−j (
log(k)−m2

1

)j −mj
i

]
},(6)

where ng indexes the degree of approximation,
{
gji

}(ng ,i)

i,j=(1,0)
are parameters, and{

mj
i

}(ng ,i)

i,j=(1,0)
are centralized moments of the distribution. The fact that the

parameters and moments must be consistent with each other implies that the
parameters gt are pinned down by the moments mt. I then approximate the
law of motion of the distribution using the law of motion for these moments.
With all of these approximations, the discretized equilibrium of the model is
characterized by a sequence of state vectors xt = (mt, Xt, zt) and control vectors
yt = (θt,gt, pt, wt) which satisfy

Et[f(xt,xt+1,yt,yt+1)] = 0,

where f is a function returning equilibrium condition residuals. This is a standard
canonical form in the perturbation literature and Winberry (2018) shows how it
can be solved using Dynare. For the analysis of state-dependence in Sections 5
and 6, I solve the model using a second-order perturbation in order to capture
the nonlinear aggregate dynamics. However, for the remaining analysis, I solve
the model using a first-order perturbation. A first-order perturbation features
the same average behavior and is computationally feasible enough to perform
the calibration. I have verified that the features of the model targeted in the
calibration are nearly indistinguishable in a first- vs. second-order calibration.

Table 4 shows that “approximate aggregation” does not hold in this model.
The table reports results from the forecasting equations

log(Ĉt −Xt)
−1 = αC

0 + αC
1 log zt + αC

2 Kt(7)
logwt = αC

0 + αC
1 log zt + αC

2 Kt(8)
logKt+1 = αC

0 + αC
1 log zt + αC

2 Kt.(9)

If approximate aggregation holds, then forecasts of the path of prices (marginal

3The notation in this discussion follows the exposition of Winberry (2018), which provides further
details.
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Table 4—Forecast Accuracy Based on Aggregate Capital

Maximum DH Mean DH R2

Capital accumulation Kt+1 1.2% 0.3% 0.999

Marginal utility (Ĉt −Xt)
−1 3.5% 0.3% 0.996

Real wage wt 13.0% 1.0% 0.989

Notes: results from forecasting using the system of equations (7) - (9). “Maximum DH” refers to the
maximum absolute difference between realized series and series forecasting by iterating on (9) for
10, 000 periods (as suggested by Den Haan (2010)). “Mean DH” refers to mean absolute difference
between these two series. “R2” refers to simple R2 of the regressions.

Figure 2. Steady State Distribution, Histogram vs. Parametric Family
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Notes: steady state distribution of firms. “Histogram” is the steady state distribution computed using a
fine histogram instead of the parametric family. “High productivity” and “low productivity” correspond
to approximately +/− two standard deviations of the distributions of idiosyncratic productivity shocks.

utility and the real wage) based on equations (7) - (9) would be extremely accu-
rate. Following Den Haan (2010), I assess the forecasting power of this system
by iterating (9) forward T = 10, 000 periods to compute a path of capital and
then using equations (7) and (8) to compute an implied path of prices. Table
4 shows that the implied forecasts are at times substantially different than the
actual prices which occur in equilibrium, which suggests that applying Krusell
and Smith (1998)’s methodology would require adding additional moments to
accurately summarize the distribution. This approach would be computationally
costly and render the simulation-based calibration in Section III.A infeasible.

My method remains accurate even in the absence of approximate aggregation
because it approximates the entire distribution of firms. Of course, the key re-
striction in this approximation is that the distribution is contained within the
parametric family (6). Figure 2 shows that the parametric distribution in steady
state is a tight fit to the true stationary distribution (computed using a fully non-
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Figure 3. Accuracy of Distribution Dynamics

100 200 300 400 500 600 700 800 900 1000

Quarters in simulated path

-30

-20

-10

0

10

20

P
er
ce
n
t
d
ev
ia
ti
o
n

Mean of log capital

Perturbation Solution

Implied by Aggregation

100 200 300 400 500 600 700 800 900 1000

Quarters in simulated path

-40

-20

0

20

40

P
er
ce
n
t
d
ev
ia
ti
o
n

Variance of log capital

Notes: results from T = 10, 000 quarter simulation. In each quarter, I use the state variable implied by
the approximated solution and compute two objects: (i) the next quarter’s moments mt+1 implied by
the approximation (“perturbation solution”) and (ii) the actual moments in the next quarter computed
by aggregating the decision rules exactly (“implied by aggregation”). Lines are percentage deviation
from steady state values.

parametric histogram, which is feasible in steady state).4 In order to assess the
accuracy of the dynamics of the distribution, I simulate the model for T = 10, 000
quarters and, for each quarter t in the simulation, compute two objects: (i) the
next quarter’s moments mt+1 implied by the approximation and (ii) the actual
moments in the next quarter computed by aggregating the decision rules exactly.
If the method is not accurate, then the actual moments in step (ii) may fall out-
side the parametric family. Figure 3 shows that this is not the case; the series (i)
and (ii) are nearly indistinguishable, indicating that the true distribution stays
within the parametric family (6) in response to aggregate shocks. The correlation
between the two series is over 0.997 in all cases.

VI. Business Cycle Analysis Appendix

Table 5 shows that the key results from Table 7 in the main text hold true in
four alternative specifications of the model. First, the results hold if households

4I compute the histogram over a fine grid following the approach of Young (2010).
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Table 5—Alternative Model Specifications

Impact RIt Cumulative R̂It

95-5 ratio 90-10 ratio ρ(RIt, Yt) 95-5 ratio 90-10 ratio
Full model 26.3% 20.3% 0.99 16.2% 12.7%
Separable preferences 15.2% 12.0% 0.95 8.3% 6.4%
No taxes 18.2% 13.9% 0.99 10.4% 8.6%
Lower returns to scale 19.7% 15.3% 0.99 7.1% 5.8%
No habit 25.5% 19.6% 1.00 15.7% 12.2%

Notes: impact responsiveness index RIt defined in (15) and cumulative responsiveness index R̂It
defined in (16) of the main text. adjt computes the fraction of firms which pay their fixed cost. “Full
model” refers to the calibrated model. “Separable preferences” refers to the preference specification
E0
∑∞

t=0 β
t

(
log(Ct −Xt)− χ

N
1+η
t
1+η

)
. “No taxes” refers to setting τ = 0. “Lower returns to scale”

refers to setting θ = 0.16. All variables have been HP-filtered with smoothing parameter λ = 1600.

have separable preferences over consumption and labor supply represented by5

E0

∞∑
t=0

βt

(
log(Ct −Xt)− χ

N1+η
t

1 + η

)
.

Second, the results hold if there are no taxes, which is more directly comparable
to Khan and Thomas (2008). Third, the results are also similar when using lower
returns to scale θ = 0.16 than in the paper θ = 0.21. My reading of this result
is that, conditional on generating a similar interest-sensitivity of investment, the
exact degree of returns to scale is relatively unimportant. Fourth, the results
are similar but slightly smaller in the version of the model without any habit
formation at all (λ = 0).

VII. Policy Analysis Appendix

In this appendix, I show how common investment stimulus policies can be
mapped into the investment stimulus shock ω defined in the main text.

Institutional Details

I begin with a brief description of the U.S. corporate tax code. Firms pay
taxes on their revenues net of business expenses. Most of those expenses are for
nondurable inputs such as labor, energy, or materials. These nondurable inputs
are fully deducted from the firm’s tax bill because they are completely used in

5I found that using the value of the habit formation parameter λ = 0.75 with these preferences
implies rather unstable aggregate dynamics. Therefore, I set λ = 0.5 for this exercise, which implies
stable dynamics and a roughly similar response of the real interest rate to a TFP shock as in the main
parameterization.
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Table 6—Tax Depreciation Schedule

Standard MACRS Schedule (No policy)
Year 0 1 2 3 4 5 Total PV, 7%
Deductions 200 320 192 115 115 58 1000 890
50% Bonus Depreciation
Year 0 1 2 3 4 5 Total PV, 7%
Deductions 500+100 160 96 57.5 57.5 29 1000 945
5% Investment Tax Credit
Year 0 1 2 3 4 5 Total PV, 7%
Deductions 50

35%+190 304 182.4 109.3 109.3 55 1093 1093

Notes: tax depreciation schedule for purchase of $1000 computer. Top panel: standard schedule absent
stimulus policy. Middle panel: 50% bonus depreciation allowance. Bottom panel: 5% investment tax
credit. Present value computed using 7% discount rate. Example drawn from Table 1 in Zwick and
Mahon (2017).

the fiscal year. However, since capital is a durable good, investment expenses
are deducted over time. The schedule for these deductions is given by the IRS’s
Modified Accelerated Cost Recovery System, or MACRS.

Historically, there have been two main implementations of investment stimulus
policies in the US: the investment tax credit, which was often used before the
1986 tax reform, and the bonus depreciation allowance, which has been used
as countercyclical stimulus in the last two recessions. In order to understand
how these policies work, consider the example of a firm which purchases $1000
in computer equipment.6 Table 6 reproduces the depreciation schedule for this
$1000 purchase under three regimes: the standard MACRS schedule, a 50% bonus
depreciation allowance, and a 5% investment tax credit.

First consider the standard MACRS schedule. The schedule specifies that the
recovery period for a computer is five years and also specifies the fraction of the
purchase that can be written off each each of those years. This fraction declines
over time to reflect the economic depreciation of the computer. At the end of five
years, the firm will have written off the full $1000 purchase.7

Now consider how the schedule changes under the two investment stimulus
policies. The 50% bonus depreciation allowance allows the firm to immediately
deduct 50% of the $1000, or $500. The firm then applies the standard MACRS
schedule to the remaining $500. Hence, the bonus does not change the total
amount of tax writeoffs, just their timing. Since more writeoffs are taken in

6This example draws heavily from Table 1 in Zwick and Mahon (2017).
7This discussion abstracts from the fact that firms do not pay taxes if they make a loss in that fiscal

year; I abstract from loss carryforwards/carrybacks for computational simplicity.



VOL. VOLUME NO. ISSUE LUMPY INVESTMENT 17

the present, the bonus increases the present value of tax deductions, making
investment more attractive to the firm. The 5% investment tax credit reduces
the firm’s tax bill by 5% of the $1000, or $50; expressed in terms of tax writeoffs,
this is $50/35%, where 35% is the example tax rate. The firm then applies
the standard schedule to the remaining $950. The investment tax credit thus
increases both the total amount of tax deductions and the present value of these
deductions, making investment more attractive.

Introducing Stimulus Policy into the Model

In these two examples, the present value of tax deductions is a useful summary
of how various schedules affect the incentive to invest. Proposition 2 shows that,
in my model, the present value completely characterizes how the tax code affects
the incentive to invest through the tax-adjusted price q(s) = 1 − PV (s). Any
changes in tax depreciation allowances can therefore be mapped into changes in
this tax-adjusted price, which I defined as ω in the main text. The 50% bonus
depreciation allowance is captured by ω = 0.5 × (1− PV (s)); it is as if the firm
receives the baseline depreciation schedule on all investment, plus gets an extra
subsidy on 50% of its investment. The extra subsidy ω is equal to how much the
firm values output in the current period, 1, relative to a stream of output through
the depreciation schedule, PV (s). Similarly, the 5% investment tax credit is
captured by ω = 0.05 ×

(
1
τ − PV (s)

)
; the implicit subsidy ω equals how much

the firm values the tax writeoff 1
τ relative to the baseline schedule PV (s).
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