The Investment Network, Sectoral Comovement, and the Changing U.S. Business Cycle*

Christian vom Lehn
Brigham Young University and IZA
cvomlehn@byu.edu

Thomas Winberry
Chicago Booth and NBER
Thomas.Winberry@chicagobooth.edu

December 15, 2020

Abstract

We argue that the network of investment production and purchases across sectors is an important propagation mechanism for understanding business cycles. Empirically, we show that the majority of investment goods are produced by a few “investment hubs” which are more cyclical than other sectors. We embed this network into a multisector business cycle model and show that sector-specific shocks to the investment hubs and their key suppliers have large effects on aggregate employment and drive down labor productivity. Quantitatively, we find that sector-specific shocks to hubs and their suppliers account for an increasing share of aggregate fluctuations over time, generating the declining cyclicality of labor productivity and other changes in business cycle patterns since the 1980s.

*We thank Rodrigo Adao, Gadi Barlevy, Bob Barsky, David Berger, Steve Davis, Emmanuel Farhi, Simon Gilchrist, Mike Golosov, Francois Gourio, Veronica Guerrieri, Jonathan Heathcote, Erik Hurst, Anil Kashyap, Jennifer La’O, Lilia Maliar (discussant), Brent Neiman, Pablo Ottonello, Matt Rognlie, Elisa Rubbo, Rob Shimer, Henry Siu, Joe Vavra, Christian Wolf, and seminar participants at various institutions for useful suggestions. Winberry gratefully acknowledges financial support from Chicago Booth.
1 Introduction

The defining feature of business cycles is the comovement of production across different sectors of the economy. However, recent work has shown that the degree of sectoral comovement has fallen since the early 1980s, suggesting that sector-specific shocks have become more volatile relative to aggregate shocks.\footnote{See, for example, Foerster, Sarte and Watson (2011) or Garin, Pries and Sims (2018).} Of course, a large literature studies how the input-output network of intermediate goods propagates such sector-specific shocks to macroeconomic aggregates. But given the central role of investment in business cycle fluctuations, our goal in this paper is to understand the role of the investment network — the distribution of investment production and purchases across sectors — in propagating these sector-specific shocks and therefore understanding the changing nature of business cycles since the early 1980s.

We argue that the investment network is an important propagation mechanism for understanding business cycle fluctuations. We make this argument in three main steps. First, we measure the investment network in the data and show that investment production is dominated by a small number of investment hubs which are substantially more cyclical than other sectors. Second, we embed our measured investment network into a multisector real business cycle model and find that sector-specific shocks to investment hubs and their key intermediates suppliers have large effects on aggregate employment, driving down labor productivity. Third, we measure the realized time series of sector-level shocks in the data, feed them into our model, and show that shocks to the hubs and their key suppliers account for a large and increasing share of aggregate fluctuations over time. This fact allows the model to generate the declining cyclicality of labor productivity and other changes in business cycle patterns since the early 1980s — despite the fact that the model has flexible prices and frictionless labor adjustment.

The first step in our analysis is to measure the investment network, which we define as the amount of investment goods that are produced in sector $i$ and subsequently sold to sector $j$ for each pair of sectors $(i, j)$ in the economy in any given year $t$. While the BEA has released this information in its capital flows tables, those tables are only available for a small
subset of years, do not include the majority of intellectual property, and are not consistently coded across time. We therefore perform our own measurement of the investment network building on disaggregated asset-level data for each sector. Our network covers a 37-sector disaggregation of the entire private nonfarm economy, is available each year between 1947-2018, incorporates intellectual property, and is consistently coded over time. For most of our analysis in this paper, we average the network over time and refer to the averaged network as “the” investment network. We have constructed alternative investment networks which incorporate the agriculture and government sectors, separate equipment, structures, and intellectual property products, and make other adjustments that may be of interest to other researchers. We have also constructed the network of capital rental services across sectors consistent with the national accounting procedure suggested by Barro (2019).

Our measured investment network is extremely sparse: four investment hubs – construction, machinery manufacturing, motor vehicles manufacturing, and professional/technical services – produce nearly 70% of total investment even though they only account for 15% of value added, employment, or intermediates production. Production and employment in these hubs are more volatile, more correlated with aggregates, and more strongly lead the aggregate cycle than in non-hub sectors, consistent with their central role in our model.

The second step of our analysis is to incorporate this measured investment network into a version of the multisector real business cycle framework from Horvath (2000). Each sector in our model produces gross output using capital, labor, and a bundle of intermediate goods consisting of other sectors’ output; this bundle is computed by a Cobb-Douglas aggregator which characterizes the intermediates input-output network. Each sector also accumulates new capital using another Cobb-Douglas aggregator of investment goods, which characterizes our investment network. While other studies have also employed this basic model structure, we discipline it with our new measurement of the investment network, explicitly study the network’s role in propagating sector-specific shocks onto employment, and show that it quantitatively accounts for the declining cyclicality of labor productivity and other changes in business cycle patterns over time.

Our main new result from this model is that shocks to investment hubs and their key suppliers generate large changes in aggregate employment while shocks to other sectors do
not. The key mechanism is that a sector-specific shock only affects employment if it increases the production of investment goods in the economy; shocks that only affect the production of consumption goods generate offsetting income and substitution effects, leaving employment unchanged. We show that the importance of each sector in producing investment goods can be summarized using the *Leontief-adjusted investment network*, which accounts for both directly producing investment as well as indirectly supplying intermediates to investment producers. Shocks to hubs and their key suppliers in this network act as aggregate investment supply shocks, generating a large increase in employment. In contrast, shocks to other sectors act as idiosyncratic investment demand shocks, which do not generate large changes in aggregate employment.

Our third step is to quantify the importance of this mechanism in explaining the postwar U.S. time series by feeding the realizations of sector-level productivity shocks into a calibrated version of the model. Since the early 1980s, the covariance of productivity shocks across sectors has fallen by much more than the variance of shocks within sectors. We interpret this fact as reflecting a decline in the volatility of aggregate shocks, which affect all sectors, relative to the volatility of sector-specific shocks, which affect particular sectors in isolation. This change is consistent with the decline in aggregate volatility following the Great Moderation (see, e.g., *Foerster, Sarte and Watson* (2011)). In order to isolate the role of this change in the shock process in driving our results, we hold all other parameters of the model (including the investment network) fixed over time.

The rising importance of sector-specific shocks, when propagated through the investment network, quantitatively generates the declining cyclicality of labor productivity and other business cycle changes since the 1980s. The pre-1980s sample is dominated by aggregate TFP shocks, which generate procyclical labor productivity nearly by definition. However, since sector-specific shocks become more important after the 1980s, shocks to investment hubs and their suppliers account for an increasing share of employment fluctuations over time. These

---

2Our investment hub shocks are reminiscent of the investment-specific technology shocks studied in, for example, *Greenwood, Hercowitz and Krusell* (2000) or *Justiniano, Primiceri and Tambalotti* (2010). A common problem in that literature is that investment-specific shocks generate negative comovement between investment- and consumption-producing sectors, decreasing the aggregate effect of these shocks. Our model generates positive comovement through the intermediate inputs channel in this Leontief-adjusted investment network.
shocks drive down labor productivity because they increase aggregate employment by more than GDP, thereby generating the declining cyclicality of labor productivity. Our model also generates the observed decline in the volatility of GDP and the increase of the volatility of employment relative to GDP over this period.

These quantitative results are robust to a number of model extensions. First, they are robust to allowing for trend changes in the investment network and other structural parameters, indicating that the rising importance of sector-specific shocks is the key driving force behind these changes in business cycle patterns. Second, our results also hold in a second-order approximation with CES production functions and preferences, which allows for richer nonlinearities (see, e.g. Baqae and Farhi (2019)). Third, our results are robust to various forms of adjustment frictions in labor and capital markets.

Finally, we document two new empirical results which support the role of the investment network in accounting for the changes in business cycle patterns since the 1980s. First, we show that the volatility of investment relative to the volatility of GDP has substantially increased since the 1980s, consistent with the idea that sector-specific shocks to investment suppliers play an increasingly important role over time. Second, we show that the changes in business cycle patterns have not occurred within individual sectors but are due to changes in the comovement of activity across sectors. For example, labor productivity is still highly procyclical within sector; instead, the entire decline in the cyclicality of aggregate labor productivity is due to changes in the covariance of value added and employment across sectors. Our model matches these changing covariance patterns due to the declining importance of aggregate shocks and the sparseness of the investment network. In contrast, existing explanations for the declining cyclicality of labor productivity largely abstract from sectoral heterogeneity and therefore do not speak to this empirical result.

Related Literature Our paper builds on three lines of existing research. The first uses the multisector real business cycle model to study how connections between sectors propagate sector-specific shocks to macroeconomic aggregates. Our model’s basic structure builds on Horvath (2000), as do many others in the literature (see, for example, Foerster, Sarte and Watson (2011) and Atalay (2017)). We make four main contributions to this literature. First,
we focus on the investment network rather than on the input-output network of intermediate goods. While a number of other papers also include an investment network, they do not analyze its role in propagating sector-specific shocks.\textsuperscript{3} Thus, our paper is the first to analyze the particular role of the investment network in propagating business cycle fluctuations. Second, our new measurement of the investment network provides annual time series of the network, includes all of intellectual property, and is consistently coded over the entire postwar sample.\textsuperscript{4} Third, we study the joint dynamics of GDP and aggregate employment, while most other papers focus on GDP. Fourth, we show that shocks to investment hubs and their key suppliers decrease labor productivity and that their rising importance over time accounts for the declining cyclicality of labor productivity.

The second line of related research is the fast-growing networks literature which studies how richer input-output networks in intermediate goods propagate idiosyncratic shocks to macroeconomic aggregates (see, for example, Acemoglu et al. (2012), Acemoglu, Ozdaglar and Tahbaz-Salehi (2017), Baqae and Farhi (2019), Baqae and Farhi (2020), Bigio and La’o (2020), or the survey in Carvalho and Tahbaz-Salehi (2019)). In order to allow for rich network structures, these papers use static models which abstract from investment. A natural benchmark in these models is a strong version of Hulten’s theorem: under Cobb-Douglas preferences/production and competitive/frictionless markets, the effect of a sector-specific shock on real GDP is globally equal to the sector’s Domar weight. The literature has shown how deviations from Cobb-Douglas production (e.g. Baqae and Farhi (2019)) or from competitive/frictionless markets (e.g. Baqae and Farhi (2020) or Bigio and La’o (2020)) can break this version of Hulten’s theorem. We show that the presence of investment also breaks Hulten’s theorem because the capital accumulation technology is not Cobb-Douglas.

\textsuperscript{3}In a recent complementary paper, Foerster et al. (2020) use the same model structure to study how changes in the trend growth of sector-level productivity affect aggregate trend growth (rather than studying deviations from trend, as in our paper). Quantitatively, they find that capital accumulation in investment-producing sectors plays an important role in aggregating sector-specific trends to the aggregate growth rate, complementary with the role of investment hubs in propagating shocks which we study in this paper. However, they take employment – our main outcome of interest – as exogenous. In addition, like other papers in this literature, they measure the investment network using the 1997 capital flows table (see Footnote 4).

\textsuperscript{4}Foerster, Sarte and Watson (2011) and Atalay (2017) calibrate the investment network using the BEA capital flows data from 1997, which excludes the majority of intellectual property. They are also forced to make an adjustment to ensure their model is invertible but which artificially reduces the importance of the concentration of the network. We do not require any ad-hoc adjustment to our model.
Furthermore, we characterize how the investment network interacts with the input-output network using our Leontief-adjusted investment network.

The final line of related literature studies how business cycle patterns have changed since the 1980s and whether the real business cycle framework can explain those patterns. A large subset of this literature focuses on the declining cyclicality of labor productivity in particular and has suggested roughly three sets of explanations. The first is that the aggregate shock process has changed over time (see, for example, Galí and Gambetti (2009) or Barnichon (2010)). The second set is that firms and/or workers can now more easily adjust labor inputs in response to shocks (see, for example, Galí and Van Rens (2020), Koenders and Rogerson (2005), Berger (2012), or Bachmann (2012)). The third is that there has been no actual change in the cyclicality of labor productivity, but that mismeasurement of those objects has changed (see, for example, Fernald and Wang (2016), McGrattan and Prescott (2014), or McGrattan (2020)). This literature typically constructs models without sectoral heterogeneity and therefore cannot speak to our empirical finding that the entire decline in the cyclicality of labor productivity is due to changes in the covariance of activity across sectors. More generally, we show that the investment network can reconcile a real business cycle framework with key features of business cycles since the 1980s.

Road Map  Our paper is organized as follows. We measure the empirical investment network and document the cyclical behavior of investment hubs in Section 2. We describe our version of the multisector real business cycle model and calibrate it to match the measured investment network in Section 3. In Section 4, we show that shocks to investment hubs and their suppliers have large effects on aggregate employment, driving down labor productivity, while shocks to other sectors have small aggregate effects. In Section 5, we feed the realized time series of sector-level productivity into the model and show that the rising

---

We are aware of one paper which studies the declining cyclicality of labor productivity in a model with sectoral heterogeneity: Garin, Pries and Sims (2018). We view their paper as complementary to our paper; we both study the rise of sector-specific shocks, but focus on different mechanisms which propagate those shocks to the aggregate. In Garin, Pries and Sims (2018)’s two sector model, a negative sector-specific shock induces costly worker reallocation to the other sector, so employment falls by more than value added and labor productivity increases. This mechanism implies that employment in the two sectors comoves negatively, especially post-1984; however, in the data, employment comovement is positive and stable pre- and post-1984. Hence, to our knowledge, our model is the only explanation for the declining cyclicality of labor productivity that is consistent with the empirical comovement of employment across sectors.
importance of sector-specific shocks generates the declining cyclicality of labor productivity since the 1980s. We provide empirical support for this mechanism in Section 6, which shows that those aggregate changes have not occurred within sector but are driven by changes in sectoral comovement (consistent with our model). Section 7 concludes.

2 Descriptive Evidence on the Investment Network

We combine three sources of sector-level data for our empirical work. We construct the investment network using the BEA Fixed Assets and Input-Output databases for a sample of 37 private non-farm sectors from 1947-2018 (our construction of the investment network is described below). We use the BEA GDP-by-Industry database to obtain value added and employment for the same set of sectors; however, since this data only records employment at our level of disaggregation starting in 1977, we extend the data back to 1948 using historical supplements to the data. Our combined dataset contains annual observations of value added, investment, and employment for the 1948 - 2018 period. Appendix A.1 contains details about the construction of our dataset.

Table 1 lists the sectors available in our dataset. The main advantage of this dataset is that it covers the entire postwar sample, which is necessary to analyze changes in business cycle patterns over time. In addition, the partition of sectors provides fairly detailed coverage of the private nonfarm economy. We cannot disaggregate the sectors much more finely in a consistently-defined way over time and retain coverage of the entire postwar time period.

2.1 Empirical Investment Network

We define the investment network in year $t$ as the share of the total investment expenditure of a given sector $j$ that is purchased from another sector $i$ for each pair of sectors $(i, j)$ in the economy. While the BEA capital flows tables provides information about these pairwise flows, those tables have three key shortcomings for our analysis. First, the BEA tables are only available for a handful of years, most recently 1997. Second, the sectoral disaggregation used in the various BEA tables is not consistently defined over time. Finally, and most importantly, the BEA tables do not include all of intellectual property; in fact, the 1997
### Table 1
The 37 Sectors Used in Our Analysis

<table>
<thead>
<tr>
<th>Sector</th>
<th>Sector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mining</td>
<td>Utilities</td>
</tr>
<tr>
<td>Construction</td>
<td>Wood products</td>
</tr>
<tr>
<td>Non-metallic minerals</td>
<td>Primary metals</td>
</tr>
<tr>
<td>Fabricated metals</td>
<td>Machinery</td>
</tr>
<tr>
<td>Computer and electronic manufacturing</td>
<td>Electrical equipment manufacturing</td>
</tr>
<tr>
<td>Motor vehicles manufacturing</td>
<td>Other transportation equipment</td>
</tr>
<tr>
<td>Furniture &amp; related manufacturing</td>
<td>Misc. manufacturing</td>
</tr>
<tr>
<td>Food &amp; beverage manufacturing</td>
<td>Textile manufacturing</td>
</tr>
<tr>
<td>Apparel manufacturing</td>
<td>Paper manufacturing</td>
</tr>
<tr>
<td>Printing products manufacturing</td>
<td>Petroleum &amp; coal manufacturing</td>
</tr>
<tr>
<td>Chemical manufacturing</td>
<td>Plastics manufacturing</td>
</tr>
<tr>
<td>Wholesale trade</td>
<td>Retail trade</td>
</tr>
<tr>
<td>Transportation &amp; warehousing</td>
<td>Information</td>
</tr>
<tr>
<td>Finance &amp; insurance</td>
<td>Real estate and rental services</td>
</tr>
<tr>
<td>Professional &amp; technical services</td>
<td>Management of companies and enterprises</td>
</tr>
<tr>
<td>Administrative &amp; waste management services</td>
<td>Educational services</td>
</tr>
<tr>
<td>Health care &amp; social assistance</td>
<td>Arts &amp; entertainment services</td>
</tr>
<tr>
<td>Accommodation</td>
<td>Food services</td>
</tr>
<tr>
<td>Other services</td>
<td></td>
</tr>
</tbody>
</table>

Notes: list of sectors used in our empirical analysis. Sectors are classified according to the NAICS-based BEA codes. See Appendix A.1 for details of the data construction.

table is the only one which records any intellectual property at all, but even that only records software (which was a third of all intellectual property investment in that year).

We therefore construct our own measurement of the investment network which overcomes these issues. Our construction is based on disaggregated asset-level data which records the purchases of 33 types of capital goods for each sector in each year. We then use a “bridge file” to allocate the production of these 33 types of capital goods to a mix of producing sectors. Appendix A.2 describes our procedure for estimating this bridge file, which follows BEA practice as closely as possible.6

To our knowledge, our investment network is the only version of the capital flows tables that is available in every year 1948-2018, is consistently defined over that period, and is consistent with modern national accounting practices regarding intellectual property. We

---

6Our measured investment network includes imports from outside of the U.S. and therefore accounts for the fact that the share of imported capital has increased over time (see House, Mocanu and Shapiro (2017)).
also provide a number of alternative tables which may be of interest to other researchers (as well as the asset-level bridge files used to construct the network). First, we provide an investment network which also includes agriculture, federal government, and state/local government sectors. Second, we provide an investment network that adds an ad-hoc adjustment for estimates of maintenance investment following Foerster, Sarte and Watson (2011) and Atalay (2017). Finally, we provide analogous tables for capital rental services, which may be useful in calibrating static models with capital (but without investment) or in constructing a measure of national income along the lines of Barro (2019).

**Investment Network is Highly Concentrated** Figure 1 plots a heatmap of our investment network averaged over time. Four sectors supply the majority of investment goods to the rest of the economy: construction, which supplies the majority of structures; machinery manufacturing and motor vehicle manufacturing, which supply the majority of equipment; and professional/technical services, which supplies a majority of intellectual property. We refer to these four sectors as *investment hubs*. Together, these hubs produce approximately 70% of the investment goods produced in the economy, even though they only account for approximately 15% of value added produced, intermediate goods produced, or workers employed. The fact that this small number of hubs produce the majority of investment indicates that the investment network is highly concentrated; in fact, Appendix A shows that the investment network is two to three times more concentrated than the intermediates network according the skewness of their eigenvalue centralities or weighted outdegrees.

---

7Foerster, Sarte and Watson (2011) and Atalay (2017) add an adjustment to the investment network implied by the 1997 BEA capital flows table to ensure their models are invertible (though Horvath (2000) does not). This adjustment is meant to account for maintenance investment that is done out of own-sector output. While there is evidence that maintenance investment are sizable (see McGrattan and Schmitz Jr (1999)), there are not estimates of which sectors produce this maintenance investment and maintenance investment is not counted as part of GDP in national accounting anyway. Therefore, we prefer not to add an artificial adjustment for maintenance investment in our baseline analysis; however, Appendix G shows that our model results are robust to adding this correction.

8Barro (2019)’s measure of national income satisfies the natural requirement that the present value of national income equals the present value of national consumption. GDP does not satisfy this requirement because investment is counted once when it is produced and then again when the resulting capital is used in production. Barro (2019) suggests measuring national income as the sum of non-capital income plus the net rental services on the current capital stock because the present value of these rental services equals the present value of the capital used in production. Our net capital rental services network provides the sectoral flows of the capital income portion of Barro (2019)’s measure of national income.
Figure 1: Heatmap of Empirical Investment Network

Notes: Heatmap of empirical investment network. Entry \((i, j)\) computes share of total investment expenditure in sector \(j\) that is purchased from sector \(i\), averaged over the 1947 - 2018 sample.

Appendix A.3 analyzes how the investment network has changed over time. The primary change has been the rising importance of professional/technical services as an investment supplier, consistent with the rising importance of intellectual property products. While these changes are important for long-run trends, we focus on the average investment network for our business cycle analysis in this paper.

**Investment Hubs are Highly Cyclical** Table 2 shows that employment and real value added produced at investment hubs are more volatile over the business cycle than those at non-hubs. We measure business cycle volatility using log-first differences and the HP filter. Under both transformations of the data, the investment hubs are approximately 1.5 - 2 times as volatile as non-hub sectors in both subsamples.\(^9\) For the rest of the paper, we will use log-first differences to analyze business cycle fluctuations in order to avoid the issues with two-sided filters explained in e.g. Hamilton (2018). However, all our results are robust to using the HP filter, and we present those results from time to time to help compare our

\(^9\)We compute these statistics as the unweighted average across sectors in order to focus on the volatility of the average sector. Of course, aggregate value added and employment, which we analyze in Section 5, will also depend on the share of activity in the various sectors.
Table 2
VOLATILITY OF ACTIVITY AT INVESTMENT HUBS

<table>
<thead>
<tr>
<th></th>
<th>Investment Hubs</th>
<th>Non-Hubs</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma(\Delta y_{st})$</td>
<td>9.13%</td>
<td>9.18%</td>
</tr>
<tr>
<td>$\sigma(\Delta l_{st})$</td>
<td>6.14%</td>
<td>4.83%</td>
</tr>
<tr>
<td>$\sigma(y_{hp}^{st})$</td>
<td>5.64%</td>
<td>6.29%</td>
</tr>
<tr>
<td>$\sigma(l_{hp}^{st})$</td>
<td>4.08%</td>
<td>3.21%</td>
</tr>
</tbody>
</table>

Notes: standard deviation of sector-level value added or employment. $y_{st}$ is logged real value added in sector $s$ and $l_{st}$ is logged employment in sector $s$. $\sigma(\Delta y_{st})$ and $\sigma(\Delta l_{st})$ refer to the standard deviation of the first-differences of these variables, while $\sigma(y_{hp}^{st})$ and $\sigma(l_{hp}^{st})$ refer to the standard deviation of the HP-filtered variables with smoothing parameter 6.25 for annual data. “Investment hubs” computes the unweighted average of these statistics over $s =$ construction, machinery manufacturing, motor vehicles manufacturing, and professional/technical services. “Non-hubs” compute the unweighted average over the remaining sectors. “Pre-1984” performs this analysis in the 1948 - 1983 subsample and “post-1984” performs this analysis in the 1984 - 2018 subsample. To avoid endpoint bias from the HP filter, we omit the first and last three years of data of the entire sample in computing the HP-filtered statistics.

Figure 2: Correlogram of Sector-level Value Added with Aggregate Employment

Notes: correlation of value added growth in sector $s$ in year $t + h$, $\Delta y_{st+h}$, with aggregate employment growth in year $t$, $\Delta l_t$. Both $y_{st+h}$ and $l_t$ are logged and $\Delta$ denotes the first-difference operator. The x-axis varies the lead/lag $h \in \{-2, -1, 0, 1, 2\}$. “Investment hubs” compute the unweighted average of these statistics over $s =$ construction, machinery manufacturing, motor vehicles manufacturing, and professional/technical services. “Non-hubs” compute the unweighted average over the remaining sectors. “Pre-1984” performs this analysis in the 1948 - 1983 subsample and “post-1984” performs this analysis in the 1984 - 2018 subsample.

results to previous studies.

Figure 2 shows that investment hubs are also more correlated with the aggregate business cycle. We compute the correlogram of sector-level real value added growth in year $t + h$ with
aggregate employment growth in year $t$. Investment hubs’ value added is more correlated with aggregate employment at most horizons and the difference is larger in the post-1984 subsample, consistent with the idea that shocks to investment hubs have become more important for aggregate fluctuations over time. In addition, investment hubs more strongly lead the aggregate cycle than do non-hubs.

3 Model and Calibration

We now develop and calibrate a version of the multisector real business cycle model in order to match our empirical investment network.

3.1 Model Description, Equilibrium, and Solution

The specification of the model is standard and follows Horvath (2000).

**Environment** Time is discrete and infinite. There are a finite number of sectors indexed by $j = \{1, ..., N\}$, where $N = 37$ as in our data. Each sector produces gross output using the production function

$$Q_{jt} = A_{jt} \left( K_{jt}^{\alpha_j} L_{jt}^{1-\alpha_j} \right)^{\theta_j} M_{jt}^{1-\theta_j}$$

(1)

where $Q_{jt}$ is output, $A_{jt}$ is total factor productivity, $K_{jt}$ is capital, $L_{jt}$ is labor, $M_{jt}$ is a bundle of intermediate goods, and $\alpha_j$ and $\theta_j$ are parameters. Total factor productivity, $A_{jt}$, follows the AR(1) process

$$\log A_{jt+1} = \rho_j \log A_{jt} + \varepsilon_{jt+1},$$

(2)

where $\rho_j$ is the persistence and $\varepsilon_{jt}$ are innovations (which can be correlated across sectors).

---

10 We use aggregate employment growth as our proxy for the aggregate cycle because our model predicts that shocks at investment hubs have a stronger impact on aggregate employment than GDP. Nonetheless, Appendix B shows that similar results hold when using GDP to proxy for the aggregate cycle.

11 Appendix B shows that non-hub manufacturing sectors’ behavior is more similar to the non-hub sectors than they are to the investment hubs. This result allays the concern that our results are driven by the fact that two of our four investment hubs are manufacturing sectors, and that manufacturing may be more cyclical than other sectors for reasons outside of our model. Furthermore, Appendix F shows that the extent to which manufacturing sectors differ from other non-hub sectors is largely explained by their role as suppliers of intermediate goods to the investment hubs, consistent with our model.
The bundle of intermediate inputs $M_{jt}$ consists of inputs produced from other sectors’ output, aggregated through the economy’s intermediates input-output network:

$$M_{jt} = \Pi_{i=1}^{N} M_{ijt}^{\gamma_{ij}}, \quad \text{where } \sum_{i=1}^{N} \gamma_{ij} = 1,$$

where $M_{ijt}$ is the amount of sector $i$’s output used by sector $j$ and $\gamma_{ij}$ are parameters. Constant returns to scale in intermediate bundling implies that, within sector $j$, the parameters $\gamma_{ij}$ sum to one. Each period, each sector $j$ observes the TFP shock $A_{jt}$, uses its pre-existing stock of capital $K_{jt}$, hires labor $L_{jt}$ from a competitive labor market, and purchases intermediates $M_{ijt}$ in competitive markets in order to produce gross output $Q_{jt}$.

After production, each sector accumulates capital for the next period using a bundle of inputs that are aggregated through the economy’s investment network. The capital accumulation technology is

$$K_{jt+1} = (1 - \delta_j)K_{jt} + I_{jt}$$

where $\delta_j$ is the depreciation rate of capital in sector $j$ and $I_{jt}$ is a bundle of investment goods. The bundle is given by

$$I_{jt} = \Pi_{i=1}^{N} I_{ijt}^{\lambda_{ij}}, \quad \text{where } \sum_{i=1}^{N} \lambda_{ij} = 1,$$

where $I_{ijt}$ is the amount of sector $i$’s output used by sector $j$ and $\lambda_{ij}$ are parameters. Investment hub sectors $i$ have high $\lambda_{ij}$ for many purchasing sectors $j$. We denote the investment network matrix as $\Lambda = [\lambda_{ij}]_{ij}$.

There is a representative household which owns all the firms in the economy and supplies labor to those firms. The household’s preferences are represented by the utility function

$$\mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \left( \log C_t - \chi L_t^{1+1/\eta} \right), \quad \text{where } C_t = \Pi_{j=1}^{N} C_{jt}^{\xi_j} \text{ and } \sum_{j=1}^{N} \xi_j = 1$$

where $\beta$ is the discount factor, $\chi$ controls the disutility of labor supply, $\eta$ is the Frisch elasticity of labor supply, and $\xi_j$ are parameters governing the importance of each sector’s consumption good in aggregate consumption.
**Equilibrium** We study the competitive equilibrium, which is efficient. Output market clearing for sector $j$ ensures that gross output is used for final consumption, investment, or an intermediate in production:

$$Q_{jt} = C_{jt} + \sum_{i=1}^{N} I_{jit} + \sum_{i=1}^{N} M_{jit}. \quad (7)$$

Labor market clearing ensures that aggregate labor demand equals labor supply: $\sum_{j=1}^{N} L_{jt} = L_t$. We denote the price of sector $j$’s output by $p_{jt}$, the rental rate on sector $j$’s capital by $r_{jt}$, and the wage rate by $W_t$ (which is common across sectors since labor is perfectly substitutable). We take the price index of the household’s consumption bundle as the numeraire. See Appendix C for more details on the equilibrium conditions.

**Solution Method** We solve the model by log-linearization. A key advantage of linearization is that it is efficient enough to handle a model of this size (with nearly one hundred state variables). In addition, the linear solution features certainty equivalence, so that the covariance matrix of these innovations does not affect the decision rules. This property allows us to simply feed the empirical time series of realized shocks into the decision rules without needing to estimate how the entire covariance structure of shocks has changed over time. However, linearization implies that we do not capture potential nonlinearities, such as size- or state-dependent responses to shocks. We show that our results are robust to allowing for nonlinearities in Appendix G.

### 3.2 Remarks on Simplifying Assumptions

We have made a number of simplifying assumptions in our model specification. For example, Cobb-Douglas preferences impose that the elasticity of substitution across different sectors’ output is one, while Cobb-Douglas production technologies impose that the elasticity between capital, labor, and intermediates are also one.\footnote{While purposely simple, we nevertheless view these assumptions as a useful benchmark, especially given estimates of elasticities of substitution from the data. On the preference side, \textit{Oberfield and Raval (2020)} estimate the elasticity of substitution between finely disaggregated manufacturing sectors to be between 0.8 and 1.1. On the production side, most empirical estimates of the elasticity between capital and labor are less} We have also assumed that there are no
adjustment frictions to capital or labor, either across sectors or over time (though we will add a simple capital reallocation friction in our quantitative analysis in Section 5).

As will become clear in Section 4, these stark assumptions allow us to clearly explain the contribution of the investment network in propagating sector-specific shocks. In fact, without investment, employment is constant in response to shocks and the effect of these shocks on real GDP is given by the sector’s Domar weight. Hence, our model is a useful benchmark for understanding the role of investment — and the investment network — in driving employment fluctuations. Nevertheless, we show in Appendix G that our main results are robust to relaxing these simplifying assumptions.

As discussed in the introduction, we also assume that all structural parameters of the model are constant over time, so that the only force which generates changing business cycle patterns is changes in the process generating sector-level shocks. We also show in Appendix G that our results are robust to allowing these other structural parameters to change over time as well. We interpret this finding as indicating that changes in these other parameters are of secondary importance for understanding the aggregate business cycle fluctuations that we study (though they may be important for understanding long-run changes or other business cycle features).

### 3.3 Calibration

We calibrate the structural parameters of the model so that the model’s steady state matches key empirical targets averaged over the postwar sample. A model period is one year. We identify the \( N = 37 \) sectors in our model with those in our empirical work, and therefore use the BEA input-output database to infer the parameters of the production function. The share of primary inputs in production \( \theta_j \) is given by the ratio of sector \( j \)’s value added to its gross output, averaged over time. The labor share \( 1 - \alpha_j \) is given by average labor compensation (adjusted for taxes and self employment) as a share of total value added. See Appendix D for the calibrated values of these parameters.

The parameters of the intermediates input-output network \( \gamma_{ij} \) are given by sector \( j \)’s than one, but some estimates are greater than one. However, Atalay (2017) argues intermediates are much more complementary with capital and labor than implied by Cobb-Douglas.
Notes: heatmap of intermediates input-output network \( \gamma_{ij} \) constructed as described in Appendix D. The \((i, j)\) entry of each network corresponds to parameter \( \gamma_{ij} \), i.e. the share of intermediate expenditures by sector \( j \) on goods produced by sector \( i \) averaged across the years 1947-2018. 

expenditure on intermediates from sector \( i \) as a share of its total intermediates expenditure, averaged over the years 1947-2018. Figure 3 plots the heatmap of our calibrated intermediates network. It has a strong diagonal element, capturing firms’ purchases of intermediates from within their own sector, but is also richly populated off the diagonal, capturing intermediates purchased from other sectors.\(^{13}\)

The parameters of the investment network, \( \lambda_{ij} \), are equal to the share of sector \( j \)’s total investment expenditure that is purchased from sector \( i \), averaged over time – already plotted in Figure 1. Capital depreciation rates \( \delta_j \) are the implied depreciation rates for each sector, based on average annual depreciation of each capital good and the average amount of each type of good used in sector \( j \).

The consumption shares \( \xi_j \) are given by the average consumption expenditure on sector \( j \)

\(^{13}\)Our measured intermediates and investment input-output networks account for goods that are imported from sectors outside the U.S. Therefore, our model’s decision rules for factor demand correctly account for trade with the result of the world; however, the model counterfactually assumes that all factor supply is domestically produced. While extending our model to an open economy framework would be an interesting exercise, it is outside the scope of this paper. Our measured productivity shocks, discussed in Section 5, are derived from purely domestic sources, so the exogenous shocks fed into our model are not driven by changes in foreign demand.
We set the discount factor to $\beta = 0.96$. We normalize the disutility of labor parameter to $\chi = 1$. We take the Frisch elasticity $\eta \to \infty$ to capture indivisible labor at the individual level, as in Rogerson (1988), since we analyze fluctuations in employment rather than hours.

4 Role of Investment Network in Propagating Sector-Specific Shocks

Before turning to our quantitative analysis, we explain the theoretical mechanisms through which sector-specific shocks affect employment, GDP, and labor productivity.

4.1 Aggregation of Sector-Level Outcomes

Our first step is to define real GDP and aggregate employment in our multisector model. While it is straightforward to compute aggregate employment $L_t = \sum_{j=1}^{N} L_{jt}$, it is more difficult to compute real GDP because relative prices change over time. We follow national accounting practices and define real GDP using a Divisia index. The Divisia index begins with the definition of nominal GDP $P^Y_t Y_t = \sum_{j=1}^{N} p^Y_{jt} Y_{jt}$, where $P^Y_t$ and $p^Y_{jt}$ are price indices for aggregate and sector-level value added and $Y_{jt}$ is sector-level real value added (defined in Appendix C). The Divisia index then computes real GDP growth as the log-change in nominal value added, holding prices fixed:

$$d \log Y_t = \sum_{j=1}^{N} \left( \frac{p^Y_{jt} Y_{jt}}{P^Y_t Y_t} \right) d \log Y_{jt}. \quad (8)$$

In our model, sector-level value added is equal to payments to the primary inputs because there are no economic profits. Appendix C shows that these payments depend only on TFP and the primary inputs themselves: $d \log Y_{jt} = \frac{1}{\theta_j} d \log A_{jt} + \alpha_j d \log K_{jt} + (1 - \alpha_j) d \log L_{jt}$.

Plugging this expression into the Divisia index (8) implies the following proposition:

\[\text{The Divisia index is defined in continuous time while our model is in discrete time. For the purposes of simplifying exposition here, we do not take a stance on the exact discrete time approximation to the continuous time Divisia index used, but in our quantitative analysis, we use a Tornqvist index.}\]
Proposition 1. Up to first order, the impact effect of a sector-specific shock $A_{it}$ on real GDP $Y_t$ is determined by

$$d \log Y_t = \sum_{j=1}^{N} \left( \frac{p_j Q_j}{P Y Y} \right)^* d \log A_{jt} + (1 - \alpha^*) \sum_{j=1}^{N} \left( \frac{L_j}{L} \right)^* d \log L_{jt}.$$

(9)

where $\left( \frac{p_j Q_j}{P Y Y} \right)^*$ is the ratio of sector $j$’s sales to nominal GDP in steady state (its Domar weight), $\left( \frac{L_j}{L} \right)^*$ is sector $j$’s employment share in steady state, and $1 - \alpha^* = \sum_{j=1}^{N} (1 - \alpha_j) \left( \frac{p_j Y_j}{P Y Y} \right)^* = (W L_{PY})^*$ is the aggregate labor income share in steady state.

Proof. See Appendix E. ■

Proposition 1 shows that the effect of a sector-specific shock in some sector $i$, $A_{it}$, on the Divisia index can be decomposed into the shock’s effect on aggregate TFP, $d \log TFP_t$, and aggregate employment, $d \log L_t$ (capital does not enter this expression since it is fixed upon impact). Aggregate TFP is the sum of sector-level TFP weighted by the ratio of the sectors’ steady state Domar weights $\sum_{j=1}^{N} \left( \frac{p_j Q_j}{P Y Y} \right)^*$ (Hulten, 1978). The insight of Hulten’s theorem is that the Domar weight is a sufficient statistic for capturing how a shock to a given sector propagates to the other sectors through the input-output network of intermediate goods.

Since Hulten’s theorem for aggregate TFP is well understood, we will instead focus our analysis on understanding the endogenous responses of aggregate employment. Under our preference specification, equilibrium employment in sector $j$ is given by

$$L_{jt} = (1 - \alpha_j) \theta_j \frac{p_{jt} Q_{jt}}{C_t}.$$

(10)

Employment is proportional to the household’s valuation of output $\frac{p_{jt} Q_{jt}}{C_t}$, which converts gross sales into utility units by multiplying by the marginal utility of consumption.$^{16}$

---

$^{15}$In principle, the reallocation of activity across sectors may also affect aggregate TFP by changing the distribution of Domar weights across sectors. However, Proposition 1 shows that these reallocation effects are second order; up to first order, only the steady state Domar weights are relevant for computing aggregates.

$^{16}$The expression (10) uses our assumption that the Frisch elasticity of labor supply $\frac{1}{\eta} \rightarrow \infty$. With a finite
4.2 What Determines Fluctuations in Employment?

In order to understand the effect of a shock on the household’s valuation of output, and therefore on employment, we must define two objects summarizing the intermediates network. First, the *input-output matrix* summarizes the intermediates network across sectors:

\[
\Gamma = \begin{bmatrix}
\gamma_{11}(1 - \theta_1) & \ldots & \gamma_{1N}(1 - \theta_N) \\
\vdots & & \vdots \\
\gamma_{N1}(1 - \theta_1) & \ldots & \gamma_{NN}(1 - \theta_N)
\end{bmatrix}.
\]

Second, the *Leontief inverse* is

\[
\mathcal{L} = (I - \Gamma)^{-1} = I + \Gamma + \Gamma^2 + ...
\]

As described by Carvalho and Tahbaz-Salehi (2019), the \((i, j)\)-th element of this matrix, \(\ell_{ij}\), captures all the direct and indirect paths in the input-output matrix \(\Gamma\) through which sector \(i\) supplies intermediate goods to sector \(j\). The Leontief inverse is key in determining the allocation of employment across sectors:

**Proposition 2.** The allocation of employment across sectors satisfies

\[
L_{jt} \propto \sum_{k=1}^{N} \ell_{jk} \frac{p_{kt}C_{kt}}{C_t} + \sum_{k=1}^{N} \ell_{jk} \sum_{m=1}^{N} \lambda_{km} \frac{p_{mt}I_{mt}}{C_t}. \tag{11}
\]

Furthermore, \(\frac{p_{kt}C_{kt}}{C_t} = \xi_k\) for all realizations of \(\{A_{it}\}_{i=1}^{N}\).

**Proof.** See Appendix E. ■

Proposition 2 shows that employment in a given sector \(j\) depends on how that sector supplies consumption goods to the household and investment goods to other firms, either

Frisch elasticity, the expression becomes

\[
L_{jt} = \alpha_j \theta_j \frac{p_{jt}Q_{jt}}{C_t} \frac{1}{L_t^{1/\eta}}.
\]

All of our results hold using this more general preference specification, but the expressions become more complicated. Therefore, we prefer to use the \(\frac{1}{\eta} \rightarrow \infty\) specification to keep this discussion as simple as possible.
directly or indirectly through the intermediates network. The contribution to consumption is characterized by the Leontief inverse, $\ell_{jk}$, times the household’s valuation of consumption produced by those sectors $k$, $p_k C_{kt} / C_t$. The contribution to investment is characterized by the Leontief inverse, $\ell_{jk}$, times the contribution of those sectors $k$ in supplying investment goods to other sectors $m$ through the investment network, $\lambda_{km}$, times the household’s valuation of investment purchased by those sectors, $p_I C_t$.

Due to the household’s Cobb-Douglas preferences, its valuation of consumption across sectors is constant over time and equal to the preference parameter $\xi_k$; therefore, shocks which only affect the household’s valuation of consumption goods do not affect employment – regardless of the structure of the intermediates network. Because such shocks do not affect investment, they generate generate equal-sized increases in the marginal product of labor and in aggregate consumption. The resulting income and substitution effects on labor supply exactly offset because our preferences are consistent with balanced growth in the aggregate.\(^\text{17}\)

In contrast, the household’s valuation of investment goods $p_I C_t$ may fluctuate over time because investment is a dynamic problem and the capital accumulation technology is not Cobb-Douglas.\(^\text{18}\) These fluctuations reflect the fact that investment weakens the income effect on labor supply. Therefore, shocks affect employment in sector $j$ only if they affect the household’s valuation of investment goods $p_I C_t$ in some sector $m$ in the economy, and sector $j$ supplies investment goods to that sector $m$.

\(^\text{17}\)It is fairly well-known in the one-sector RBC model that employment only responds to TFP shocks because the household would like to produce more investment goods in order to smooth consumption over time (see the discussion in Benhabib, Rogerson and Wright (1991), for example). Basu et al. (2013) extend that logic to a two-sector model and show that shocks which only affect the production of consumption goods have no effect on employment, while shocks which affect investment production have a strong effect on employment. Our results further extend this logic to a multisector framework and show that the classification of consumption- and investment-producing sectors interacts with the intermediates network through the Leontief inverse.

\(^\text{18}\)Appendix F shows that the linearity of the capital accumulation equation is the key departure from Cobb-Douglas which generates employment fluctuations. In particular, we show that if the capital accumulation equation is also Cobb-Douglas $K_{jt+1} = K_{jt}^{-\delta_j} I_{jt}$, then sector-level employment is constant over time (similar to Rossi-Hansberg and Wright (2007)). In this case, the unitary elasticity of substitution implies that investment is proportional to output, so shocks generate exactly offsetting income and substitution effects (as they do for the household’s valuation of consumption). The linearity of the capital accumulation equation $K_{jt+1} = (1 - \delta_j) K_{jt} + I_{jt}$ breaks this result because flow investment becomes perfectly substitutable with undepreciated capital in the production of new capital.

A related special case is our linear capital accumulation equation with full depreciation $\delta_j \to 1$. In this case, one can view capital as an intermediate good with one period time to build. This specification also implies constant employment because it falls within the Cobb-Douglas class.
Figure 4: The Leontief-Adjusted Investment Network $\Omega$

Notes: left panel plots plots the elements of the Leontief-adjusted investment network $\omega_{ij} = \sum_{k=1}^{N} \ell_{ik} \lambda_{kj}$, where $\ell_{ik}$ are elements of the Leontief inverse and $\lambda_{kj}$ are elements of the investment network. Right panel plots the elements of our measured investment network $\lambda_{ij}$ (reproduced from Figure 1 for convenience).

Proposition 2 shows that the investment supply linkages between two sectors $j$ and $m$ are determined by $\omega_{jm} \equiv \sum_{k=1}^{N} \ell_{jk} \lambda_{km}$, which captures the role of sector $j$ in supplying investment goods to sector $m$ both directly through the investment network and indirectly through the intermediates network. We call the matrix of these linkages the Leontief-adjusted investment network because it is the matrix product of the Leontief inverse with the investment network: $\Omega = \mathcal{L}\Lambda$. The left panel of Figure 4 shows that the Leontief-adjusted investment network is less concentrated than the raw investment network $\Lambda$ (reproduced in the right panel of the figure). This occurs because the density of the intermediates network implies that many sectors supply intermediate goods to investment hubs. The durable manufacturing sectors near the top of the heatmap – primary metals, fabricated metals, and computers – as well as wholesale trade and transportation & warehousing are particularly important intermediate suppliers of the investment hubs.

Since the Leontief-adjusted investment network $\Omega$ is fairly dense, shocks $A_{it}$ which affect the household’s valuation of investment throughout the sectors of the economy $m$ will also generate employment fluctuations in many sectors $j$. This result can be seen more clearly by re-writing Proposition 2 in terms of log-deviations from steady state:

$$d \log L_{jt} = \sum_{m=1}^{N} \tilde{\omega}_{jm} d \log \left( \frac{p_{mt}I_{mt}}{C_t} \right),$$

(12)
Notes: reduced-form elasticities of aggregate employment $N_t$ to sector-specific shocks $A_{it}$. For each sector, we simulate the model with $\sigma(\epsilon_{it}) = 1\%$ shocks to that sector only. The bars plot the volatility of aggregate employment $\sigma(\log N_t)$ divided by the volatility of sector-specific TFP $\sigma(\log A_{it})$. Investment hubs are highlighted in red.

where $\tilde{\omega}_{jm} = \sum_{k=1}^{N} \ell_{jk} \lambda_{km} \left( \frac{p_{im}^t I_{mt}}{p_j Q_j} \right)^*$ is the Leontief-adjusted investment network further adjusted for steady state sector size and investment expenditures.

**Which Shocks Generate Large Changes in Employment?** Unfortunately, just as with the one-sector RBC model, our model does not admit a closed-form solution to show exactly how sector-specific shocks $A_{it}$ affect the household’s valuation of investment $d \log \left( \frac{p_{im}^t I_{mt}}{C_t} \right)$ throughout the economy. Instead, we provide numerical results to show which sectors’ shocks generate large changes and then use basic investment theory to explain those results.

Figure 5 shows that shocks to investment hubs and their key suppliers have large effects on aggregate employment while shocks to other sectors do not. The figure computes a numerical elasticity of aggregate employment with respect to a sector-specific shock $A_{it}$ in each sector.\(^{19}\) The investment hubs have the four largest elasticities, particularly construction. The next largest elasticities are in the key suppliers to hubs identified in the Leontief-adjusted investment network: durable manufacturing, wholesale trade, and transportation & warehousing.

\(^{19}\)We assume that the persistence of the shocks $\rho_j$ are the calibrated values from Section 5.
The remaining sectors have very small elasticities.

**What’s Special About Investment Hubs and their Suppliers?** By equation (12), shocks to investment hubs and their suppliers have large effects on employment because those shocks generate large changes in the household’s valuation of investment throughout the economy (we also confirm this fact numerically in Appendix F). In order to understand why that is the case, consider the Euler equation for investment in some sector $m$:

$$
\frac{p_{m}^{I}t}{C_{t}} = \beta E_{t} \left[ \alpha_{m} \theta_{m} p_{m,t+1} Q_{m,t+1} + (1 - \delta_{m}) \frac{p_{m,t+1}^{I}}{C_{t+1}} \right].
$$

(13)

The marginal benefit of investment on the right-hand side of (13) is the present value of next period’s marginal product of capital plus the value of undepreciated capital, relative to the household’s marginal utility of consumption. The marginal cost of investment on the left hand side of (13) is equal to its price index $p_{m}^{I}t \equiv \Pi_{k=1}^{N} \left( \frac{p_{kt}}{\lambda_{km}} \right)^{\lambda_{km}}$, again relative to the marginal utility of consumption.

**Proposition 3.** Up to first order, the effect of sector-specific shocks $A_{it}$ on the investment price index for sector $m$, $p_{m}^{I}t$, holding primary input prices fixed, is:

$$
d \log p_{m}^{I}t = - \sum_{i=1}^{N} \omega_{im} d \log A_{it},
$$

(14)

where $\omega_{im}$ are the elements of the Leontief-adjusted investment network.

*Proof.* See Appendix E.

Proposition 3 shows that shocks to investment hubs and their key suppliers $A_{it}$ act as investment supply shocks in the sense that they decrease the price index for investment goods $p_{m}^{I}t$ for many sectors $m$. In fact, holding primary input prices fixed, the investment price index is a sum of all sectors’ productivity, weighted by the sectors’ Leontief-adjusted investment network connections $\omega_{im}$. A shock to one of these key sectors increases the supply of investment goods in the economy, decreasing the price index. In response, sectors increase their optimal quantity of investment $I_{mt}$, and therefore the household’s valuation of their...
investment goods and ultimately employment.\textsuperscript{20}

In contrast, shocks to other sectors act as idiosyncratic investment demand shocks in the sense that they primarily affect the marginal product of capital in their own sector. While these shocks may spill over to other sectors, Figure 5 shows that these spillovers are small in terms of their impact on employment. Therefore, going forward, we focus on the role of shocks to investment hubs and their key suppliers in driving employment fluctuations. We define the \textit{key suppliers} as durable manufacturing, wholesale trade, and transportation & warehousing because these sectors have large weights in the Leontief-adjusted investment network (displayed in Figure 4).

\textbf{Relationship to Networks Literature} These results are related to the recent networks literature, which typically uses static models without investment to study how idiosyncratic shocks affect macroeconomic aggregates. Without investment, our model implies that employment is literally constant because shocks do not affect the household’s valuation of consumption in Proposition 2. In this case, the Domar weight is also a sufficient statistic for the effect of the shock on real GDP: \(d \log Y_t = \sum_{j=1}^{N} \left( \frac{p_j Q_j}{p Y} \right) S_d \log A_{jt} \). In addition, the Domar weights are constant over time, so Domar aggregation is no longer a first-order approximation but instead is globally true.

Our results in this section show that investment, and the investment network, breaks this strong version of Hulten’s theorem in two ways. First, the Domar weight is not a sufficient statistic for the effect of a shock on real GDP because the shock also affects employment, and the response of employment also is determined by the Leontief-adjusted investment network. Second, the Domar weights fluctuate over time due to changes in the household’s valuation of investment.\textsuperscript{21}

\textsuperscript{20}The sensitivity of investment \( I_{mt} \) with respect to its relative price \( p_{I_{mt}} \) is heterogeneous across sectors given heterogeneity in depreciation rates and production parameters in our model. For example, investment in sectors which purchase high-depreciation assets are less responsive to changes in the price. Appendix F numerically explores these sources of heterogeneity.

\textsuperscript{21}Of course, the investment network also shapes the distribution of Domar weights in steady state. Appendix F shows that the average Domar weights of the investment hubs are comparable to the Domar weights of other sectors.
Figure 6: Impulse Responses to Aggregate vs. Hub + Supplier Shocks

Notes: impulse responses of real GDP, aggregate employment, aggregate TFP, and aggregate labor productivity to combinations of sector-specific shocks $A_{it}$. Left panel: response to a 1% increase in $A_{it}$ for all sectors $i$. Right panel: response to a 1% increase in $A_{it}$ for the investment hubs and their key suppliers only.

4.3 Implications for Changing Business Cycles Since the 1980s

We now briefly discuss how the key insight of this section — employment fluctuations are primarily driven by shocks to investment hubs and their suppliers — can qualitatively account for a number of changes in business cycle patterns since the early 1980s; we will quantify this mechanism in Section 5. We will show that the key change in the early 1980s was that the correlation of shocks $A_{it}$ across sectors fell dramatically. We interpret this change as reflecting the fact that the pre-1980s sample is dominated by aggregate shocks, which affect all sectors at once, while the post-1980s sample is dominated by idiosyncratic shocks, which affect specific sectors in isolation.

The left panel of Figure 6 plots the impulse responses of real GDP, aggregate employment, aggregate TFP, and aggregate labor productivity to a 1% aggregate shock (which increases TFP $A_{it}$ by 1% in each sector). The shock increases employment because it increases the productivity of investment hubs and their key suppliers, as discussed above. The shock simultaneously increases productivity at the other sectors, raising their production and therefore real GDP. The effect on these other sectors’ productivity is reflected in a roughly 2% increase in aggregate TFP, equal to the sum of Domar weights across all sectors in the economy. Overall, real GDP increases by more than aggregate employment, so labor productivity rises upon impact of the shock — consistent with its procyclicality in the pre-1980s
The right panel of Figure 6 plots the same impulse responses in response to a shock which affects only the investment hubs and their suppliers. As before, aggregate employment increases because these sectors are the primary suppliers of investment. But unlike before, this increase in employment is not accompanied by an increase in productivity of the other sectors. Therefore, TFP only increases by 0.5% (since these sectors’ Domar weights are only about 1/4 of the aggregate). In total, aggregate employment increases by more than real GDP upon impact of the shock, driving down aggregate labor productivity. \(^{22}\) Section 5 shows that this mechanism generates acyclical labor productivity in the post-1980s sample because these idiosyncratic shocks account for a larger share of employment fluctuations over time. In contrast, shocks to other sectors have small effects on aggregate employment.

### 4.4 Additional Results

Appendix F contains two sets of additional results. First, we relate our analysis to the literature which studies the effects of investment-specific technical shocks (e.g. Greenwood, Hercowitz and Krusell (2000) or Justiniano, Primiceri and Tambalotti (2010)). One can view these models as a two-sector version of our model without the intermediates input-output network. Of course, our model provides a richer classification of sectors in which the correct concept of an “investment producer” is not only its direct production of investment goods but also its role in supplying intermediate goods to the investment hubs. But our model also solves the so-called “comovement” problem in this literature, which is that shocks to the investment-producing sector do not generate positive comovement in the consumption-producing sector. Our model generates comovement through the intermediates network, through which many non-investment hubs indirectly produce investment goods (captured by the Leontief-adjusted investment network).

The second set of additional results provides supporting evidence for key mechanisms

---

\(^{22}\) Appendix F computes the cyclicality of labor productivity induced by each sectors’ shocks in isolation. We show that shocks to nearly all of the investment hubs and their suppliers generate countercyclical labor productivity. The only exceptions are professional/technical services, wholesale trade, and transportation & warehousing. While shocks to these sectors have a large effect on employment, they are also important suppliers in the intermediates network; hence, they have large Domar weights, generating a larger effect on aggregate TFP and therefore real GDP.
described above. Similar to Section 2, we show that the key suppliers to investment hubs
are more volatile and more correlated with the aggregate cycle than the non-suppliers. This
finding is consistent with the role of key suppliers in our model documented above.

5 Application: Changes in Business Cycles Since 1980s

We now apply the insights developed in Section 4 to study changes in business cycle patterns
since the early 1980s.

5.1 Quantifying the Effects of Changes in Sector-Level Productivity Shocks

In our model, the key force driving these changes in business cycle patterns is the fact
that sector-level productivity shocks have become less correlated across sectors. We measure
sector-level productivity as the Solow residual of real gross output net of the primary inputs:23

\[
\log A_{jt} = \log Q_{jt} - \theta_{jt} \alpha_{jt} \log K_{jt} - \theta_{jt}(1 - \alpha_{jt}) \log L_{jt} - (1 - \theta_{jt}) \log M_{jt}.
\] (15)

Of course, changes in the measured Solow residual may reflect changes in technology shocks
or changes in other non-technology forces, such as allocational efficiency or the utilization of
resources (see, for example, Basu, Fernald and Kimball (2006)). We view our simple exercise
as a natural first step in quantifying the role of the investment network in propagating
sector-specific shocks.24

We need to detrend sector-level TFP because our model does not feature trend growth.
However, a log-linear trend does not fit sector-level data well because sectors typically grow
and shrink in nonlinear ways. We therefore take out a log-polynomial trend in order to cap-
ture these nonlinearities. We choose degree 4 in order to strike a balance between flexibility

23 We allow the factor shares \( \alpha_{jt} \) to change year-by-year to ensure that changes in our measured productivity
are not driven by changes in the production technology. This choice creates a slight inconsistency with our
model, in which the factor shares are constant over time. However, our main model results are virtually
unaffected by keeping these parameters fixed over time.

24 These is also a practical reason that we do not correct for utilization: consistent measures of hours-per-
worker in each sector, which are required to perform the Basu, Fernald and Kimball (2006) correction, are
not available in our data.
Table 3
DECOMPOSITION OF SHOCK VOLATILITY

<table>
<thead>
<tr>
<th></th>
<th>Measured TFP</th>
<th>Value Added</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pre-84</td>
<td>Post-84</td>
</tr>
<tr>
<td>(1000 \text{Var}(x_t))</td>
<td>0.41</td>
<td>0.10</td>
</tr>
<tr>
<td>Variances</td>
<td>0.08</td>
<td>0.06</td>
</tr>
<tr>
<td>Covariances</td>
<td>0.33</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Notes: results of the decomposition (16) in the pre-1984 sample (1948-1983) and post-1984 sample (1984-2018). “Variances” refers to the variance component \(1000 \sum_{j=1}^{N} (\omega_{jt})^2 \text{Var}(\Delta \log A_{jt})\), weighted by sector \(j\)’s average Domar weight in the relevant subsample. “Covariances” refers to the covariance component \(1000 \sum_{j=1}^{N} \sum_{o \neq j} \omega_{jt} \omega_{ot} \text{Cov}(\Delta \log A_{jt}, \Delta \log A_{ot})\). “Measured TFP” refers to performing this analysis on log measured TFP growth \(\Delta \log A_{jt}\). “Value added” refers to performing this analysis on log real value added growth; in this specification, we weight by value added shares rather than Domar weights. Totals may not appear to be exact sums due to rounding.

in the trend and not overfitting the data; Appendix D shows how various degrees fit the data and justifies our use of a fourth-order trend. Furthermore, Appendix G shows that our main results hold for other degrees of this polynomial trend.

The left panel of Table 3 characterizes how TFP shocks have changed over time by performing the following statistical decomposition:

\[
\text{Var}(\Delta \log A_t) = \sum_{j=1}^{N} (\omega_{jt})^2 \text{Var}(\Delta \log A_{jt}) + \sum_{j=1}^{N} \sum_{o \neq j} \omega_{jt} \omega_{ot} \text{Cov}(\Delta \log A_{jt}, \Delta \log A_{ot}) \tag{16}
\]

where \(\log A_{jt}\) is log TFP, \(\Delta\) denotes first differences, and \(\omega_{jt}\) is the average Domar weight of sector \(j\) in the subsample. Table 3 shows that the volatility of aggregate TFP has fallen by more than 70% since 1984, consistent with the “Great Moderation” of aggregate volatility. Nearly the entire decline in aggregate volatility is accounted for by a decline in the covariance of TFP across sectors; the within-sector variances component has declined by much less.

As we said, we interpret this result as reflecting a decline in the variance of aggregate shocks together with a relatively stable variance of sector-specific shocks. A helpful special case of our shock process to develop that intuition is

\[
\log A_{jt} = \log A_t + \log \hat{A}_{jt},
\]

28
where $A_t$ is an aggregate shock common to all sectors and $\tilde{A}_{jt}$ is independent across sectors. In this special case, the only source of covariance is the aggregate shock $A_t$, so the decline in covariances in the decomposition (16) maps directly into a decline in $\mathbb{V}ar(\Delta A_t)$. Appendix D performs a more general principal components analysis and yields a similar conclusion; the volatility of the first principal component – the “aggregate shock” – declines substantially since 1984 and accounts for the entire decline in volatility. Foerster, Sarte and Watson (2011) and Garin, Pries and Sims (2018) make a similar argument based on the comovement patterns of sector-level value added rather than measured productivity; the right panel of Table 3 shows that our results hold for value added as well.\footnote{The “Great Moderation” literature has suggested two broad interpretations of this decline in aggregate volatility. The first is good luck: aggregate shocks have simply become more volatile over time (for example, oil shocks became less severe and less frequent). The second is good policy: either public policy (monetary or fiscal) or private inventory management have allowed the economy to better absorb aggregate shocks. In this paper, we simply take the decline in aggregate volatility as given, without taking a stand on why it has occurred.}

We use the following procedure to feed realized TFP shocks into our model. First, we estimate the persistence $\rho_j$ using maximum likelihood over the entire sample. These persistence parameters, along with the others parameters calibrated in Section 3, are sufficient to compute the linearized decision rules in our model because those decision rules do not depend on the covariance matrix of shocks. Second, given the values of $\rho_j$, we compute the innovations to our detrended productivity shocks in the data. We simulate the decision rules given the realized history of shocks, starting from the non-stochastic steady state in 1948.

**Investment Production Frictions** If we feed these measured shocks directly into our baseline model, the model produces counterfactually large volatility in the distribution of investment expenditures across sectors. Table 4 measures this volatility as the average change in sector $j$’s total investment expenditures as a fraction of aggregate investment expenditures, $\mathbb{E}[\Delta \left( \frac{p^I_{jt}I_{jt}}{\sum_{k=1}^{N} p^I_{kt}I_{kt}} \right) ]$, or as the standard deviation of that change, $\sigma \left( \frac{p^I_{jt}I_{jt}}{\sum_{k=1}^{N} p^I_{kt}I_{kt}} \right)$. The left and middle panels of Table 4 shows that these changes are around five times larger in the model than in the data. This result occurs because, given the linearity of the market clearing condition (30), an investment-producing sector $i$ sees its potential customer sectors $j$ as perfect substitutes. Therefore, small changes in investment demand from these purchasing...
Table 4
Volatility of Investment Expenditures Composition

<table>
<thead>
<tr>
<th></th>
<th>Data</th>
<th>Model w/o Frictions</th>
<th>Model w/ Frictions</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1000 \times \mathbb{E}[\Delta \sum_{k=1}^{P_{it}} I_{kt}]$</td>
<td>2.0</td>
<td>9.7</td>
<td>2.1</td>
</tr>
<tr>
<td>$1000 \times \sigma \left( \sum_{k=1}^{N} \frac{p_{it} I_{kt}}{p_{kt} I_{kt}} \right)$</td>
<td>2.7</td>
<td>14.1</td>
<td>2.7</td>
</tr>
</tbody>
</table>

Notes: measures of changes in the distribution of investment expenditures across sectors. “Data” refers to value of the statistic in the data. “Model w/o Frictions” refers to the model described in Section 3. “Model w/ frictions” refers to the model augmented with Huffman and Wynne (1999) frictions, as described in the main text.

sectors generate counterfactually large changes in the composition of the producing sector’s customers, and thus in the distribution of investment expenditures across sectors. In turn, this excess volatility generates an excessively high volatility of aggregate investment to GDP.

We introduce a simple friction to bring this excess volatility in line with the data. Following Huffman and Wynne (1999), we modify the market clearing condition for sector $j$’s output to be

$$Q_{jt} = C_{jt} + \sum_{i=1}^{N} M_{ijt} + \left( \sum_{i=1}^{N} I_{ijt}^{-\rho} \right)^{-\frac{1}{\rho}} ,$$

where $\rho \leq -1$ controls the degree of the investment production friction. The baseline model from Section 3 imposed $\rho = -1$, corresponding to an infinite elasticity of substitution between different purchasing sectors. When $\rho < -1$, investment becomes imperfectly substitutable across purchasing sectors, capturing the idea that the types of investment goods produced by sector $i$ are specific to its customers $j$, at least in the short run.\(^{26}\)

We set the parameter $\rho = -1.04$ in order to match the changes in investment composition in Table 4. Our calibrated $\rho$ is similar to the value used in Huffman and Wynne (1999). While all our quantitative results going forward use this extended version of the model, Appendix G shows that our main results are even stronger without these additional frictions because investment expenditures and, by Proposition 2, employment, are more responsive

---

\(^{26}\)Importantly, this reallocation friction (17) does not affect the theoretical results derived in Section 4. The only difference is that now the price of investment goods has an endogenous component which reflects the imperfect substitution of capital goods and dampens large changes in the composition of investment production. See Appendix G for more details.
<table>
<thead>
<tr>
<th></th>
<th>Data</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pre-1984</td>
<td>Post-1984</td>
</tr>
<tr>
<td>$\sigma(\Delta y_t)$</td>
<td>3.18%</td>
<td>1.98%</td>
</tr>
<tr>
<td>$\rho(\Delta y_t - \Delta l_t, \Delta y_t)$</td>
<td>0.56</td>
<td>0.28</td>
</tr>
<tr>
<td>$\sigma(\Delta l_t)/\sigma(\Delta y_t)$</td>
<td>0.83</td>
<td>1.01</td>
</tr>
<tr>
<td>$\sigma(\Delta i_t)/\sigma(\Delta y_t)$</td>
<td>2.25</td>
<td>3.10</td>
</tr>
<tr>
<td>$\sigma(y_{hp}^t)$</td>
<td>2.03%</td>
<td>1.24%</td>
</tr>
<tr>
<td>$\rho(y_{hp}^t - l_{hp}^t, y_{hp}^t)$</td>
<td>0.52</td>
<td>0.14</td>
</tr>
<tr>
<td>$\sigma(l_{hp}^t)/\sigma(y_{hp}^t)$</td>
<td>0.85</td>
<td>1.09</td>
</tr>
<tr>
<td>$\sigma(i_{hp}^t)/\sigma(y_{hp}^t)$</td>
<td>2.41</td>
<td>3.50</td>
</tr>
<tr>
<td></td>
<td>Pre-1984</td>
<td>Post-1984</td>
</tr>
<tr>
<td>$\sigma(\Delta y_t)$</td>
<td>3.95%</td>
<td>2.42%</td>
</tr>
<tr>
<td>$\rho(\Delta y_t - \Delta l_t, \Delta y_t)$</td>
<td>0.52</td>
<td>-0.01</td>
</tr>
<tr>
<td>$\sigma(\Delta l_t)/\sigma(\Delta y_t)$</td>
<td>0.90</td>
<td>1.03</td>
</tr>
<tr>
<td>$\sigma(\Delta i_t)/\sigma(\Delta y_t)$</td>
<td>3.78</td>
<td>4.11</td>
</tr>
<tr>
<td>$\sigma(y_{hp}^t)$</td>
<td>2.52%</td>
<td>1.80%</td>
</tr>
<tr>
<td>$\rho(y_{hp}^t - l_{hp}^t, y_{hp}^t)$</td>
<td>0.92</td>
<td>0.01</td>
</tr>
<tr>
<td>$\sigma(l_{hp}^t)/\sigma(y_{hp}^t)$</td>
<td>3.86</td>
<td>4.04</td>
</tr>
</tbody>
</table>

Notes: business cycle statistics in the pre-1984 sample (1948 - 1983) and post-1984 sample (1984-2018). “Data” refers to our empirical dataset. “Model” refers to model simulation starting from steady state and feeding in realizations of measured TFP over the sample. $y_t$ is log real GDP, $l_t$ is log aggregate employment, and $i_t$ is log real aggregate investment. $\Delta$ denotes the first difference operator, and the $hp$ superscript denotes the HP-filtered series with smoothing parameter $\lambda = 6.25$. To avoid endpoint bias from the HP filter, we omit the first and last three years of data of the entire sample in computing the HP filtered statistics.

5.2 Changes in Aggregate Business Cycle Patterns in Calibrated Model

In this subsection, we show that our model quantitatively matches a number of changes in business cycle patterns since the early 1980s. In Section 5.3, we confirm that these results are driven by the rising importance of sector-specific shocks to investment hubs and their key suppliers, consistent with the theoretical discussion in Section 4.3.

The left panel of Table 5 documents the key changes in aggregate business cycle patterns in the data. The top panel computes the statistics on first-differenced series while the bottom panel uses the HP filter (for both the data and the model).\(^a\) Using either procedure, the

\(^a\)The HP filter has the advantage of isolating business cycle frequencies, while first differences include both high-frequency noise as well as low-frequency changes in average growth rates. The main disadvantage of the HP filter is that its two-sided nature induces cyclical deviations that may not have been known to agents at the time. We partially address this concern by HP-filtering both the model and data series in order to ensure an apples-to-apples comparison. We also omit the first and last three years of data over the sample.
volatility of GDP is approximately 40% lower in the post-1984 sample than in the pre-1984 sample — again, consistent with the well-known Great Moderation of aggregate volatility. The cyclicality of labor productivity, measured as the correlation of GDP per worker with GDP, switched from being procyclical in the pre-1980s to being essentially acyclical in the post-1980s. In addition, the volatility of employment rose by approximately 1/3 relative to GDP over this time. Appendix H shows that this rising volatility of employment accounts for the entire decline in the cyclicality of labor productivity; intuitively, since employment and GDP are highly correlated in both subsamples, the time series behavior of their ratio depends on the more volatile component.28

Finally, the left panel of Table 5 shows that the volatility of investment relative to GDP has also risen substantially since 1984. This finding is consistent with the idea that the rising importance of shocks to investment hubs and their suppliers in driving aggregate fluctuations since 1984. To our knowledge, we are the first to note the increased relative volatility of investment over this period.

The right panel of Table 5 shows that the model generates all of these changes in business cycle patterns. The model matches the decline in the volatility of real GDP because TFP shocks become less correlated over time, similar to the results in Foerster, Sarte and Watson (2011). More novel to our study is the fact that the model’s cyclicality of aggregate labor productivity also falls over this period; using first differences, the cyclicality of labor productivity in the model falls by 0.53 compared to 0.28 in the data, while using the HP filter it falls by 0.52 compared to 0.38 in the data. Consistent with this fact, the standard deviation of employment relative to GDP rises similarly in the model as in the data (again, see Footnote 28). Finally, the model’s relative volatility of investment also increases over time, consistent with the rising importance of shocks to investment hubs and their suppliers.29

in order to avoid endpoint bias from the HP filter. We HP-filter the aggregate series directly, rather than aggregating the HP-filtered sector-level series. As in Section 2, we use a smoothing parameter of λ = 6.25.

28One can see the source of this result using the identity (derived in Appendix H):

\[ \text{Corr}(\Delta y_t, \Delta y_t - \Delta l_t) = \frac{1 - \frac{\sigma(\Delta l_t)^2}{\sigma(\Delta y_t)^2} \text{Corr}(\Delta y_t, \Delta l_t)}{\sqrt{1 + \frac{\sigma(\Delta l_t)^2}{\sigma(\Delta y_t)^2} - \frac{2 \sigma(\Delta l_t)^2}{\sigma(\Delta y_t)^2} \text{Corr}(\Delta y_t, \Delta l_t)}}. \] (18)

Since output and employment are highly correlated both before and after 1984, the decline in the cyclicality of labor productivity is driven by the increase in the relative volatility of employment.

29The volatility of aggregate investment relative to GDP is somewhat higher in our model than in the
Figure 7: 14-Year Forward-Looking Rolling Windows of Labor Productivity Cyclicality

![Graph showing cyclicality of labor productivity over time with data and model series compared.]

Notes: 14-year forward-looking rolling windows of the cyclicality of labor productivity (e.g., 1950 data point computes the cyclicality between 1950-1963). “Data” corresponds to aggregated version of our dataset. “Model” corresponds to aggregated version of model simulation under measured realizations of sector-level TFP shocks. Top panel computes the statistic using first differences: \( \text{corr}(\Delta y_t - \Delta l_t, \Delta y_t) \) where \( y_t \) is log aggregate value added, \( l_t \) log aggregate employment, and \( \Delta \) denotes the first-difference operator. The bottom panel computes the same statistic using the HP filter instead of first differences.

Figure 7 shows that the model also matches the timing of the decline in the cyclicality of labor productivity. We compute the dynamics of this statistic using 14-year forward-looking rolling windows in both the data and in our model. The two series track each other quite closely using either first differences or the HP filter. The cyclicality of labor productivity is fairly stable until the early 1980s, at which point it drops sharply following the Volcker recession. The cyclicality further declines in the 2008 financial crisis and its aftermath; by the end of the sample, it has fallen by a similar amount in the model and in the data. The correlation between the model and data’s series of rolling windows is 0.76 using first differences and 0.91 using the HP filter.

Data, especially in the pre-1984 period. While in principle we could allow for adjustment costs to the accumulation of capital within sector to match the overall level of volatility, we have found that these adjustment costs generate counterfactually low volatility in the composition of investment spending across sectors and counterfactually high comovement in investment fluctuations across sectors.
More generally, Appendix G shows that the model matches the entire time series of aggregate GDP, consumption, investment, and employment surprisingly well given that no aggregate series were targeted in the calibration and the model does not feature nominal rigidities or the host of other frictions emphasized in the DSGE literature. The average correlation between model and data for these series is approximately 0.5 – 0.6.

5.3 Role of Investment Network and Sector-Specific Shocks in Driving Changing Business Cycles

We now confirm that the changes in business cycles are quantitatively driven by the rising importance of sector-specific shocks to investment hubs and their key suppliers, as discussed in Section 4.3. Table 6 decomposes measured productivity in sector $j$ into an aggregate component and a residual sector-specific component using a principal components analysis similar to that which we perform on the data in Appendix D. We then assess the contribution of aggregate shocks or sector-specific shocks feeding in only the relevant shocks and setting the remaining shocks to zero.

Consistent with the discussion in Section 4.3, aggregate shocks account for the majority of employment fluctuations in the pre-1980s period and generate procyclical labor productivity (as in the left panel of Figure 6). However, sector-specific shocks account for the majority of employment fluctuations in the post-1980s period. Shocks to the investment hubs and their suppliers drive most of these fluctuations since shocks to the other sectors have a small effect on aggregate employment. Aggregate labor productivity is countercyclical in response to these shocks, as in the right panel of Figure 6.

30 Specifically, we identify the aggregate shock using the first principal component $F_t$ of the innovations to TFP across sectors $\varepsilon_{jt}$. We then compute sector-specific shocks as a residual of that factor using OLS. This procedure yields the decomposition $\varepsilon_{jt} = \alpha F_t + e_{jt}$, where $\alpha F_t$ is the “aggregate shock” and $e_{jt}$ is the “sector-specific” shock. The results in Table 6 are not additively separable because the statistics reported are not linear and the sector-specific shocks $e_{jt}$ are not orthogonal to $F_t$ for all sectors $j$ in both pre- and post-1984 time periods. While this approach is not the only one to decomposing aggregate vs. sector-specific shocks in our model, we use it because it is also commonly used in the data (see, for example, Foerster, Sarte and Watson (2011) and Garin, Pries and Sims (2018)).

31 Shocks to the investment hubs and their key suppliers account for more than 95% of the employment fluctuations generated by all sectoral shocks reported here (details available upon request).
Table 6
Decomposing the Effects of Aggregate vs. Sectoral Shocks

<table>
<thead>
<tr>
<th></th>
<th>All Shocks</th>
<th>Agg. Shocks Only</th>
<th>Sectoral Shocks Only</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma(\Delta y_t)$</td>
<td>3.95%</td>
<td>2.42%</td>
<td>3.45%</td>
</tr>
<tr>
<td>$\sigma(\Delta l_t)$</td>
<td>3.55%</td>
<td>2.48%</td>
<td>2.74%</td>
</tr>
<tr>
<td>$\rho(\Delta y_t - \Delta l_t, \Delta y_t)$</td>
<td>0.52</td>
<td>-0.01</td>
<td>0.85</td>
</tr>
<tr>
<td>$\sigma(\Delta l_t)/\sigma(\Delta y_t)$</td>
<td>0.90</td>
<td>1.03</td>
<td>0.79</td>
</tr>
<tr>
<td>$\sigma(\Delta i_t)/\sigma(\Delta y_t)$</td>
<td>3.78</td>
<td>4.11</td>
<td>3.31</td>
</tr>
</tbody>
</table>

Notes: business cycle statistics in the pre-1984 sample (1948 - 1983) and post-1984 sample (1984-2018). $y_t$ is log real GDP, $l_t$ is log aggregate employment, $i_t$ is log real aggregate investment, and $\Delta$ denotes the first difference operator. “Baseline” refers to the baseline model described in the main text. “Agg. shocks only” refers to feeding in only the aggregate shocks (as identified following Footnote 30). “Sectoral shocks only” refers to feeding in only the sector-specific shocks (again, as identified following Footnote 30).

Shocks vs. Propagation  The theoretical discussion in Section 4.3 assumed that the size of aggregate vs. sector-specific shocks were the same in order to focus on the role of the investment network in propagating those shocks. However, the sizes of the shocks that we feed in from the data may change over time, which may in principle drive some of our quantitative results. The top right panel of Table 7 shows that this is not the case. We standardize the size of shocks in each sector to be 1% in both the pre- and post-1984 subsamples; therefore, the only change since 1984 is that the correlation of shocks fell by the level observed in the data. While the overall level of volatility is obviously different in this version of the model, the relative volatility of employment and cyclicality of labor productivity change by similar amounts as in the baseline calibration.

The bottom left panel of Table 7 confirms that the concentrated structure of the empirical investment network is the key propagation mechanism driving the changes in business cycle patterns, again consistent with the discussion in Section 4.3. In this panel, we eliminate the concentration of the network by instead assuming that $\Lambda = I$, i.e. each sector invests out of its own output. Therefore, the large investment producers which we have argued drive our results do not exist in this version of the model. In this case, the relative volatility of employment and cyclicality of labor productivity do not significantly change since the 1980s.
Table 7
ROLE OF INVESTMENT NETWORK IN DRIVING CHANGING BUSINESS CYCLES

<table>
<thead>
<tr>
<th>Full Model</th>
<th>Pre-84</th>
<th>Post-84</th>
<th>Uniform Variances</th>
<th>Pre-84</th>
<th>Post-84</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sigma(\Delta y_t))</td>
<td>3.95%</td>
<td>2.42%</td>
<td>(\sigma(\Delta y_t))</td>
<td>1.76%</td>
<td>1.29%</td>
</tr>
<tr>
<td>(\sigma(\Delta l_t)/\sigma(\Delta y_t))</td>
<td>0.90</td>
<td>1.03</td>
<td>(\sigma(\Delta l_t)/\sigma(\Delta y_t))</td>
<td>0.88</td>
<td>1.03</td>
</tr>
<tr>
<td>(\text{Corr}(\Delta y_t - \Delta l_t, \Delta y_t))</td>
<td>0.52</td>
<td>-0.01</td>
<td>(\text{Corr}(\Delta y_t - \Delta l_t, \Delta y_t))</td>
<td>0.55</td>
<td>0.03</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Identity Inv. Net.</th>
<th>Pre-84</th>
<th>Post-84</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sigma(\Delta y_t))</td>
<td>3.16%</td>
<td>1.72%</td>
</tr>
<tr>
<td>(\sigma(\Delta l_t)/\sigma(\Delta y_t))</td>
<td>0.88</td>
<td>0.90</td>
</tr>
<tr>
<td>(\text{Corr}(\Delta y_t - \Delta l_t, \Delta y_t))</td>
<td>0.59</td>
<td>0.48</td>
</tr>
</tbody>
</table>

Notes: business cycle statistics in the pre-1984 sample (1948 - 1983) and post-1984 sample (1984-2018). \(y_t\) is log real GDP, \(l_t\) is log aggregate employment, \(i_t\) is log real aggregate investment, and \(\Delta\) denotes the first difference operator. “Full model” corresponds to the model described in the main text. “Identity investment network” assumes that sectors invest using only their own output, i.e. \(\lambda_{ii} = 1\) for all \(i\) and \(\lambda_{ij} = 0\) for all \(j \neq 1\). “Uniform variances” standardizes the size of shocks to be 1% in both the pre- and post-1984 sample.

5.4 Robustness

Appendix G shows that our main results are robust to relaxing a number of simplifying assumptions in our model.

Structural Change So far, we have held the parameters of the economic environment fixed in order to focus on changes in the process of sector-specific shocks. Appendix G allows for those parameters to change over time, specifically: the share of primary inputs in production \(\theta_{jt}\), labor’s share in production \(\alpha_{jt}\), the entries of the intermediates network \(\gamma_{ijt}\), the entries of the investment network \(\lambda_{ijt}\), capital depreciation rates \(\delta_{jt}\), and the consumption shares \(\xi_{jt}\).

While these parameters have indeed changed in interesting ways, Appendix G shows that our main results in this section are robust to allowing for these changes. We incorporate these parameter changes in two ways. First, we allow agents to have perfect foresight over the path of these parameter changes using the approach developed in Maliar et al. (2020). Second, we compute the average values of the parameters in the pre-1984 and post-1984 subsamples and compute the population moments of the model corresponding to those two parameter
configurations. Our main results about changes in business cycle patterns continue to hold in both of these exercises. Of course, a full analysis of the process of structural change, its driving forces, and how much is expected by economic agents at the time is outside the scope of our paper. The goal of these exercises is simply to show that allowing for these changes is unlikely to overturn our results.

**Non-Cobb Douglas Production and Preferences** Appendix G also relaxes our assumptions of Cobb-Douglas production and preferences by allowing for a constant elasticity of substitution between capital, labor, and intermediate goods, as well as a constant elasticity across goods in preferences. We discipline these elasticities using the estimates from Atalay (2017) and Oberfield and Raval (2020) and show that our quantitative results are similar in this extended model. We also solve the extended model using a second order approximation in order to capture the rich nonlinearities described in Baqee and Farhi (2019). This extended model produces changes in business cycle patterns very similar our baseline analysis in the main text.

**Other Robustness Checks** Finally, Appendix H shows that our results are robust to a number of other extensions. First, we vary the strength of the Huffman and Wynne (1999) investment production frictions. Second, we allow for convex adjustment costs to capital in order to better match the overall volatility of investment. Third, we allow for maintenance investment in the investment network, as discussed in Footnote 7. Fourth, we allow for labor reallocation frictions across sectors.

## 6 Changes in Aggregate Cycles Driven by Changes in Sectoral Comovement

While we believe that our explanation for the changes in business cycle patterns since the 1980s is a natural one, there are many other possible explanations as well (such as those surveyed in the related literature section). Therefore, in this section, we document a new empirical fact which supports a key implication of our explanation over the others: the
### Table 8
**Divergence of Aggregate and Sectoral Cycles**

<table>
<thead>
<tr>
<th></th>
<th>Aggregate</th>
<th></th>
<th>Within-Sector</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma(\Delta y_t)$</td>
<td>3.18%</td>
<td>1.98%</td>
<td>5.42%</td>
<td>4.29%</td>
</tr>
<tr>
<td>$\rho(\Delta y_t - \Delta l_t, \Delta y_t)$</td>
<td>0.56</td>
<td>0.28</td>
<td>0.69</td>
<td>0.67</td>
</tr>
<tr>
<td>$\sigma(\Delta l_t)/\sigma(\Delta y_t)$</td>
<td>0.83</td>
<td>1.01</td>
<td>0.76</td>
<td>0.81</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Aggregate</th>
<th></th>
<th>Within-Sector</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma(\Delta y_t)$</td>
<td>3.95%</td>
<td>2.42%</td>
<td>5.89%</td>
<td>4.93%</td>
</tr>
<tr>
<td>$\rho(\Delta y_t - \Delta l_t, \Delta y_t)$</td>
<td>0.52</td>
<td>-0.01</td>
<td>0.79</td>
<td>0.85</td>
</tr>
<tr>
<td>$\sigma(\Delta l_t)/\sigma(\Delta y_t)$</td>
<td>0.90</td>
<td>1.03</td>
<td>0.52</td>
<td>0.43</td>
</tr>
</tbody>
</table>

Notes: business cycle statistics in the pre-1984 sample (1948 - 1983) and post-1984 sample (1984-2018). “Data” refers to our empirical dataset. “Model” refers to model simulation starting from steady state and feeding in realizations of measured TFP over the sample. $y_t$ is log real value added, $l_t$ is log employment and $\Delta$ denotes the first difference operator. “Aggregate” refers to outcomes for aggregate variables. “Within-sector” computes the statistics for each sector and then averages them weighted by the average share of nominal value added within that sub-sample.

Changes in business cycle patterns have not occurred within individual sectors of the economy but are instead due to changes in the comovement of activity across sectors. Our model quantitatively matches this fact because shocks to investment hubs and their suppliers generate different comovement patterns across sectors than do aggregate shocks. In contrast, most existing explanations for business cycle changes abstract from sectoral heterogeneity and therefore do not make a prediction for this key feature of the data. We focus this section on the cyclicality of labor productivity and relative volatility of employment because they have attracted the most attention in the existing literature.

**Sector-Level Cycles Stable Over Time** Table 8 shows that sector-level business cycles are stable over the postwar sample both in the data and in our calibrated model. These within-sector business cycle statistics first compute the statistics for each sector in the economy and then average those statistics across all sectors (Appendix H shows that these findings are robust to using various weighting schemes to compute the within-sector average and to using the HP filter). The cyclicality of sector-level labor productivity – the correlation of
sector-level value added per worker with sector-level value added – and the relative volatility of sector-level employment are essentially constant across the two sub-samples. While the volatility of sector-level value added falls somewhat post-1984, its magnitude is about half as large as the decline in the volatility of GDP. In our model, the sector-level patterns are relatively stable because sector-specific shocks are the dominant source of fluctuations within sector and the volatility of those shocks has remained stable over time.

Changes Driven by Sectoral Comovement Since the changes in the aggregate cycle do not occur within sector, they must be driven by changes in the covariances of activity across sectors. We formalize this argument using the following decomposition:

\[
\frac{\text{Var}(\Delta l_t)}{\text{Var}(\Delta y_t)} \approx \frac{\sum_{j=1}^{N} (\omega^l_{jt})^2 \text{Var}(\Delta y_t)}{\sum_{j=1}^{N} (\omega^y_{jt})^2 \text{Var}(\Delta l_t)} + (1 - \omega_t) \frac{\sum_{j=1}^{N} \sum_{\alpha \neq j} \omega^l_{jt} \omega^l_{\alpha t} \text{Cov}(\Delta l_{jt}, \Delta l_{\alpha t})}{\sum_{j=1}^{N} \sum_{\alpha \neq j} \omega^y_{jt} \omega^y_{\alpha t} \text{Cov}(\Delta y_{jt}, \Delta y_{\alpha t})}.
\]

where \( y_{jt} \) is log real value added of sector \( j \), \( l_{jt} \) is employment of sector \( j \), and \( y_t \) and \( l_t \) are aggregate value added and employment. This decomposition, derived in Appendix H, breaks down the variance of employment relative to the variance of GDP into two components. The first “variances” component is the average variance of employment relative to the average variance of value added within sectors. The second “covariances” component is the average covariance of employment across all pairs of sectors relative to the average covariance of value added across pairs. The “variance weight” \( \omega_t = \frac{\sum_{j=1}^{N} (\omega^l_{jt})^2 \text{Var}(y_{jt})}{\sum_{j=1}^{N} (\omega^l_{jt})^2 \text{Var}(y_t)} \) ensures that the averages of these ratios add up to the ratio of aggregate variances. We focus on the increase in the relative volatility of employment because, as we argued in Section 5, this increase accounts for the entire decline in the cyclicality of labor productivity.

The left panel of Table 9 shows that 85% of the increase in the relative volatility of aggregate employment in the data is accounted for by an increase in the covariances term; in contrast, the within-sector average variances are stable, consistent with the results in Table 8. Appendix H shows that the changes in covariances reflect two patterns in the data. First, the covariance of value added across sectors fell in the post-1984 sample, decreasing the volatility of aggregate GDP. Second, the covariance of employment across sectors remained

39
### Table 9
Decomposition of Relative Employment Volatility

<table>
<thead>
<tr>
<th></th>
<th>Data</th>
<th></th>
<th></th>
<th>Model</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pre-84</td>
<td>Post-84</td>
<td>Contribution</td>
<td>Pre-84</td>
<td>Post-84</td>
<td>Contribution</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>of entire term</td>
<td></td>
<td></td>
<td>of entire term</td>
</tr>
<tr>
<td>$\frac{\text{Var}(l_t)}{\text{Var}(y_t)}$</td>
<td>0.68</td>
<td>1.04</td>
<td>100%</td>
<td>0.81</td>
<td>1.05</td>
<td>100%</td>
</tr>
<tr>
<td>Variances</td>
<td>0.41</td>
<td>0.48</td>
<td>15%</td>
<td>0.75</td>
<td>0.57</td>
<td>10%</td>
</tr>
<tr>
<td>Covariances</td>
<td>0.72</td>
<td>1.19</td>
<td>85%</td>
<td>0.82</td>
<td>1.15</td>
<td>90%</td>
</tr>
<tr>
<td>Variance Weight</td>
<td>0.12</td>
<td>0.21</td>
<td></td>
<td>0.10</td>
<td>0.17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>($\omega_t = \sum_{j=1}^{N} (\omega_{jt}^y)^2 \text{Var}(y_{jt})/\text{Var}(y_t)$)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: results of the decomposition (19) in the pre-1984 sample (1948 - 1983) and post-1984 sample (1984-2017). “Data” refers to our empirical dataset. “Model” refers to model simulation starting from steady state and feeding in realizations of measured TFP over the sample. “Variances” refers to the variance component $\sum_{j=1}^{N} (\omega_{jt}^y)^2 \text{Var}(\Delta y_{jt})/\text{Var}(\Delta y_{t})$. “Covariances” refers to the covariance component $\sum_{j=1}^{N} \sum_{o\neq j} \omega_{jt}^y \omega_{ot}^y \text{Cov}(\Delta y_{jt}, \Delta y_{ot})/\text{Var}(\Delta y_{t})$. “Variance weight” refers to the weighting term $\omega_t = \sum_{j=1}^{N} (\omega_{jt}^y)^2 \text{Var}(\Delta y_{jt})/\text{Var}(\Delta y_{t})$. “Contribution of entire term” computes the contribution of the first term of the decomposition (19) (in the variances row) or the contribution of the second term (in the covariances row).

Comparatively stable, stabilizing its aggregate volatility and therefore raising its volatility relative to output.

The right panel of Table 9 replicates this decomposition on model-simulated data and shows that, consistent with the data, the covariance terms account for approximately 90% of the increase in the relative volatility of employment. As in the data, this result reflects two patterns. First, the covariance of value added falls because the covariance of productivity shocks themselves fall. Second, the covariance of employment across sectors is stable because employment is primarily determined by shocks to the few investment hubs and their suppliers in both the pre- and post-1980s subsamples. Together, these two facts drive up the relative volatility of employment and therefore drive down the cyclicity of labor productivity. Appendix H provides more details about these comovement patterns and also shows that our model does very well in explaining covariance changes at the individual sector-pair level.

Another reason that the covariance of employment is stable in our model is that the composition of investment producers is similar across purchasing sectors in the economy; therefore, a shock to an investment hub has a similar effect on most other sectors in the economy.
Robustness Appendix H contains five additional pieces of analysis of this decomposition in order to ensure that the results are robust features of the data. First, it shows that the changes in covariance patterns we discuss are broad-based and not driven by outliers. Second, it shows that the results also hold using the HP filter rather than first differences to detrend the data. Third, it shows that the changes in covariances are reflected in changes in correlations, rather than changes in variances. Fourth, it shows that the approximation inherent in the decomposition (19) is accurate. Fifth, it shows that the results of this decomposition also hold for a finer 450-sector disaggregation of manufacturing in the NBER-CES database.

7 Conclusion

In this paper, we have argued that the investment network plays an important role in propagating sector-specific shocks to macroeconomic aggregates. Our argument had three main components. First, we showed that the empirical investment network is dominated by four investment hubs that produce the majority of investment goods, are highly volatile at business cycle frequencies, and are strongly correlated with the aggregate cycle. Second, we embedded this concentrated network into a standard multisector business cycle model and showed that shocks to the investment hubs and their key suppliers have large effects on aggregate employment and drive down labor productivity. Third, we measured sector-level productivity shocks in the data, fed them into the model, and found that shocks to investment hubs accounted for a large and increasing share of aggregate fluctuations. We also showed that this shift accounts for the decline in the cyclicality of aggregate labor productivity and other changes in business cycle patterns since the early 1980s.

Appendix I briefly studies the implications of this concentrated investment network for investment stimulus policies such as the bonus depreciation allowance. We model these policies as an equal subsidy for investment purchases across sectors; however, their effects on production – and therefore employment – are primarily concentrated in the investment hubs and their intermediate suppliers. Therefore, the sparseness of the investment network distorts a broad-based stimulus into something which more closely resembles industrial policy.

In order to isolate the role of the investment network in our analysis, we embedded it
into a purposely simple multisector real business cycle model. A natural next step would be to add the rich set of nominal and real rigidities which the DSGE literature has argued are relevant for business cycle analysis. We have also kept our quantitative exercise simple by focusing on sector-level productivity shocks measured as a simple Solow residual. While we do not think that the role of the investment network as a propagation mechanism is specific to productivity shocks – other non-technology shocks may have similar effects – another next step would be to understand what drives the variation in our measured shocks, and incorporate other shocks into the model as well.

References


A Construction of Dataset and the Investment Network

This Appendix describes the details of our data set and our construction of the investment network.

A.1 Data Sources

Our analysis of business cycle fluctuations uses a dataset of gross output, intermediate inputs, value added, employment, and investment for 37 non-government, non-farm sectors over the 1948 - 2018 sample. We define sectors using NAICS codes, resulting in the 37-sector partition in Table 1. Data on nominal and real measures of gross output, intermediate inputs, and value added are taken from the GDP by Industry database, while data on nominal and real investment expenditures are from the BEA Fixed Asset database.

The main challenge in compiling this dataset is constructing consistent measures of sector-level employment over the entire 1948 - 2018 sample. Starting in 1998, we observe sector-level employment in NIPA Table 6.4D, which reports the total number of full-time and part-time employees by sectors defined according to NAICS codes. Before 1998, the BEA Industry Accounts provide historical employment data converted to NAICS codes for 1948-1997. However, this data is only available for 17 out of the 37 sectors that we consider prior to 1977; the remaining sectors are in manufacturing, which the BEA collapses into broad durable and non-durable sectors over this time period. Fortunately, the BEA provides disaggregated manufacturing employment in SIC codes over this period in NIPA Tables 6.4B and 6.4C. We convert these data to the NAICS classification using the Fort and Klimek (2018) crosswalk. We ensure there is not a discontinuity at the 1977 breakpoint by cumulating the growth rates from the converted data in each sector to compute the levels of employment in the pre-1977 period rather than relying on the levels in the raw data.
TABLE A.1
*Investment Flows Table Visualization*

<table>
<thead>
<tr>
<th>Investment Producers</th>
<th>Mining</th>
<th>Utilities</th>
<th>Construction</th>
<th>⋯</th>
<th>Total Production</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Expenditures</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A.2 The Investment Network

Our investment network records the share of new investment expenditures of sector $j$ that were purchased from sector $i$ for each pair of sectors $(i, j)$ and for each year $t$ in our sample. While the BEA capital flows tables provide some relevant information in some years, those tables are limited in three key ways for our analysis. First, they are only available for seven of the 72 years from 1947-2018: 1963, 1967, 1972, 1977, 1982, 1992 and 1997.\(^{33}\) Second, they are not consistently defined over time because they use different vintages of SIC or NAICS codes. Finally, and most importantly for our analysis, the BEA tables do not include all of intellectual property; in fact, the 1997 table is the only one which records any intellectual property at all, but even that only records software (which was a third of all intellectual property investment in that year). To our knowledge, our investment network is the only version of the capital flows tables that is consistent with modern national accounting practices regarding intellectual property.\(^{34}\)

We construct our investment networks in order to overcome these limitations, but otherwise try to follow the BEA methodology as closely as possible.\(^{35}\) To help explain our approach, Table A.1 visualizes the *investment flows table*, whose $(i, j)^{th}$ entry records the total investment expenditures by sector $j$ purchased from sector $i$ in a given year. Summing across columns for each row in this table generates total production of investment by each sector,

---

\(^{33}\)Only the 1982, 1992, and 1997 tables are currently published on the BEA website, but older tables can be obtained from archived issues of the Survey of Current Business.

\(^{34}\)We have found that the presence of intellectual property is the key difference between the BEA 1997 capital flows table and our measured investment network in that year. Specifically, intellectual property makes up more than a quarter of total investment spending in the vast majority of sectors in which our network is significantly different from the BEA’s capital flows table.

\(^{35}\)McGrattan (2020), particularly the replication materials, provide useful information on details regarding the BEA methodology.
while summing across rows for each column generates total investment expenditures for each sector. The investment network simply divides each column $j$ of this table by total expenditures in that sector in order to compute expenditure shares. We construct the investment network in three steps: (i) separately construct the investment flows tables for residential investment, non-residential structures, non-residential equipment, and intellectual property, (ii) aggregate those four investment flows tables to total investment, and (iii) rescale them to compute the aggregate investment network. Steps (ii) and (iii) are straightforward matrix operations, so we focus this appendix to explaining how we perform step (i).

Unfortunately, there is no publicly available data on the pairwise investment flows between producers and purchasers necessary to fill in each element of Table A.1. Instead, we will estimate these pairwise flows using the following data which the BEA does provide:

(i) Total investment expenditures by sector for each year from Table 3.7 of the Fixed Assets data (the “total expenditures” row in Table A.1).

(ii) Total production by sector for each year from the annual use tables from the Input-Output database (the “total production” column in Table A.1). Before 1997, these tables separately record the total production of structures (both residential and non-residential), equipment (both residential and non-residential), and intellectual property. After 1997, the tables record the total production of residential investment, non-residential structures, non-residential equipment, and intellectual property.

(iii) Aggregate residential structures and residential equipment expenditures for each year from NIPA Tables 5.4.5 and 5.5.5. Because we assume that the real estate sector is the sole purchaser of residential investment – following the BEA’s methodology – there is no need for detailed residential investment expenditure data by sector.

(iv) Sector-level investment expenditure on 33 different types of assets for each year: residential structures, residential equipment, two types of non-residential structures (mining and all other), four different intellectual property assets, and 25 different equipment assets. We construct this data from the expenditures on residential structures and equipment described in point (iii) above and detailed data for Fixed Assets
by Industry, which provides expenditures on the other types of assets (available at https://apps.bea.gov/national/FA2004/Details/Index.htm).


Our approach primarily utilizes asset-level expenditure data to estimate the individual entries in Table A.1. We estimate those pairwise investment flows as

\[ I_{ijt} = \sum_{a=1}^{A} \omega_{iat} I_{ajt}^{exp}, \]  

(20)

where \( I_{ijt} \) is the \((i, j)^{th}\) element of the investment flows table in year \( t \), \( I_{ajt}^{exp} \) is expenditures by sector \( j \) on capital asset \( a \) in year \( t \), and \( \omega_{iat} \) represents the fraction of capital asset \( a \) produced by sector \( i \) in year \( t \).\(^{36}\) The key assumption in equation (20) is that the the mix of sectors producing a given asset \( a \) is the same for all sectors \( j \) which purchase that asset, i.e. that \( \omega_{iat} \) is independent of the purchasing sector \( j \). The BEA also makes this assumption in constructing their capital flows tables.

\(^{36}\)To be consistent with input-output methodology, our investment network represents expenditures on new investment, not used or scrap transactions. However, the Fixed Assets investment expenditures data used to construct \( I_{ajt}^{exp} \) in (20) does include net purchases of used assets, which often enter recorded investment expenditure as a negative value. Thus, the reported expenditures may underestimate total expenditures on new assets. In terms of measured investment expenditures, the addition of net used transactions is only a concern for equipment assets; for structures and intellectual property, net used transactions are negligible. We adjust total investment spending from the Fixed Assets data to eliminate used and scrap transactions as follows:

- For all equipment assets aside from autos, we scale up investment expenditures uniformly across sectors in order to match the total production of new assets. In 1997-2018, the scaling factor ensures that total expenditures equals total production of that asset as reported in sector-level detail on the production of individual equipment assets. Before 1997, we use the median scaling factor from 1997-2018. Overall, this correction is non-negligible only for trucks and aircraft.

- For autos, we scale up expenditures on autos in the rental/leasing sector in order to be consistent with the observation in Meade, Rzeznik and Robinson-Smith (2003) that net sales of used autos are primarily from that sector to private households (the rental/leasing sector is part of real estate in our 37 sector partition). We again choose the scaling factor to ensure that total expenditures on autos equals total expenditures in 1997-2018 (when production data is available), and choose the median scale factor from that period for the pre-1997 data (when the production data is not available).
The main challenge in our measurement procedure is to estimate the collection of $\omega_{iat}$ – which is called a bridge file – across assets $a$, sectors $i$, and years $t$. The remainder of this subsection describes how we construct these annual bridge files $\omega_{iat}$ separately for non-residential structures, intellectual property, residential investment, and equipment.

**Non-Residential Structures**

We assume that all non-residential structures are produced by the construction sector except for mining structures, which we assume are produced by the mining sector. Therefore, for $a =$ non-residential non-mining structures, we set $\omega_{iat} = 1$ if $i =$ construction and zero otherwise. For $a =$ non-residential mining structures, we set $\omega_{iat} = 1$ if $i =$ mining and zero otherwise. This allocation rule is consistent with how the BEA constructs the capital flows tables.  

**Intellectual Property**

We have data on four types of intellectual property assets: prepackaged software, own and custom software, research and development, and artistic originals. We allocate the production of these assets to sector $i$ based on the BEA practices described in McGrattan (2020).

(i) We assume that own and custom software is produced by the professional/technical services sector, i.e. for $a =$ own and custom software, $\omega_{iat} = 1$ if $i =$ professional/technical services and zero otherwise.

(ii) We assume that R & D investment is also produced by the professional/technical services sector, i.e. for $a =$ R & D investment, $\omega_{iat} = 1$ if $i =$ professional/technical services and zero otherwise.

(iii) We assume that artistic originals are produced by the information sector (which includes radio & TV communication and motion picture publishing) and the arts &

---

37 McGrattan (2020) follows this rule as well. In 1997-2018, the construction and mining sectors produce 99.9% of non-residential structures investment net of brokers’ commissions on structures (which are excluded from our investment network following the BEA’s methodology for the 1997 capital flows table).
entertainment services sector. We assume that artistic originals is the only type of intellectual property produced by the arts & entertainment sector, and therefore estimate its production of artistic originals as its total production of intellectual property from the Input-Output tables. Hence, for \( a = \text{artistic originals} \) and \( i = \text{arts & entertainment} \), we set \( \omega_{iat} = \frac{I_{\text{prod}i}^{a}}{\sum_{j=1}^{N} I_{\text{exp}j}^{at}} \) where \( I_{\text{prod}i}^{a} \) is the total production of intellectual property by \( i = \text{arts & entertainment} \) and \( \sum_{j=1}^{N} I_{\text{exp}j}^{at} \) are total economy-wide expenditures on artistic originals. We then set \( \omega_{iat} = 1 - \omega_{i'at} \) for \( i' = \text{arts & entertainment} \) and \( \omega_{iat} = 0 \) for all other \( i \).

(iv) Finally, we assume that all pre-packaged software is produced by the information sector. However, we must also take into account the fact that the wholesale trade, retail trade, and transportation & warehousing sectors play a role in delivering new pre-packaged software to customers (these delivery expenses are called margin payments). We compute the margin payments on pre-packaged software as the total production of intellectual property for those sectors as recorded in the Input-Output Tables. Hence, for \( a = \text{pre-packaged software} \) and \( i = \text{information} \), we set \( \omega_{iat} = \frac{I_{\text{prod}i}^{a}}{\sum_{j=1}^{N} I_{\text{exp}j}^{at}} \) where \( i \in \{\text{wholesale trade, retail trade, transportation & warehousing}\} \) and \( \sum_{j=1}^{N} I_{\text{exp}j}^{at} \) is total economy-wide expenditure on pre-packaged software. We then set \( \omega_{iat} = 1 - \sum_{k} \omega_{akt} \) for \( i = \text{information} \) and \( k \in \{\text{wholesale trade, retail trade, transportation & warehousing}\} \). Finally, we set \( \omega_{iat} = 0 \) for all other sectors \( i \).

**Residential Investment**

Residential investment is the sum of residential structures and residential equipment (such as appliances or other consumer durables owned by landlords and included in residential leases). As described above, the BEA directly reports the total production of residential investment by sector in the Input-Output Tables between 1997-2018. However, that production data also includes margin payments on used residential structures transactions, which we need to...
eliminate from our investment network. Our approach to estimating these margin payments for the 1997-2018 period depends on the sector:

(i) We assume that some sectors – real estate, finance/insurance, and legal services (part of professional/technical services) – only produce margin payments on residential structures and not on residential equipment. For these sectors, we assume that 13.2% of their production of residential structures corresponds to margin payments on new transactions, based on the estimated fraction of real estate broker margins that were for new residential structure investment (as used in the 1997 BEA capital flows data and reported in Meade, Rzeznik and Robinson-Smith (2003)).

(ii) Other sectors produce margin payments for both residential structures and equipment (wholesale trade, retail trade, and transportation & warehousing). For these sectors, we estimate their total margin payments as the sum of their total production of residential equipment (corresponding to margin payments on residential equipment, observed in detailed equipment production data) and 13.2% of their production of residential structures (corresponding to margin payments on new residential structures, assumed to be the remainder of these sectors’ total production of residential investment).

Unfortunately, the BEA does not separately report production of residential investment by sector prior to 1997. Our procedure to estimate residential investment in this period depends on the sector:

(i) We assume some sectors (wood products manufacturing, finance/insurance and professional/technical services) produce residential structures but do not produce non-residential structures or residential equipment in the post-1997 data. We therefore estimate these sectors’ total production of residential investment as their reported total production of structures pre-1997. We then eliminate margin payments on used transactions following the same procedure described in the previous paragraph.

---

39 This assumption is validated by the fact that these sectors do not contribute to the production of total equipment (residential + non-residential) in the pre-1997 production data.

40 This assumption is validated by the fact that these sectors report zero production of any equipment investment pre-1996 and no production of non-residential structures post-1997 in the Input-Output tables.
(ii) We estimate the other sectors’ production of residential investment using the following procedure.

- Residential structures: in the 1997-2018 period, we can infer sector-level production of residential structures directly in the Input-Output Tables (given that we separately observe production of residential equipment in the detailed data describing production of equipment over this period). In the pre-1997 period, when we do not observe production, we estimate it as the average share of residential structures produced by that sector in the 1997-2018 data times the aggregate spending on residential structures in a given year \( t < 1997 \).

- Residential equipment: we follow a similar procedure as for residential structures; given observed sector-level production of residential equipment for later years, we use the average share produced by each sector times aggregate spending on residential equipment. Because we have detailed data on the sectoral production of residential equipment for the years 1987 and 1992 as well, for years \( t < 1987 \), we use 1987 data on the shares of sectoral production times the aggregate time series for residential equipment spending. For years between 1987 and 1992, we use a moving average of the residential equipment production shares from the 1987 and 1992 bridge files, and for years between 1992 and 1997, we use a moving average of the data in 1992 and 1997.

Since these procedures define the bridge files \( \omega_{iat} \) recursively, we do not write out their formulas here but rather refer the interested reader to the replication packet.

**Non-Residential Equipment**

Constructing the bridge files for equipment assets is the most involved task because there are 25 detailed types of equipment assets reported in the Fixed Asset data. We describe our procedure separately for three time periods which have different data availability from the BEA:

(i) 1997 - 2018: The BEA already publishes detailed data on the production of individual
equipment assets by each sector, i.e. we observe $\omega_{iat}$ from the data directly.

(ii) 1987 and 1992: The BEA publishes bridge files for each of these assets in 1987 and 1992, but the sectors correspond to SIC codes rather than NAICS codes. Therefore, we convert these bridge files from SIC to NAICS using the Fort and Klimek (2018) crosswalk.\textsuperscript{41}

(iii) Remaining years: in the years for which we have no publicly available bridge files, we interpolate the existing bridge files and re-scale the interpolation so that it matches the total production of equipment investment by sector from the input-output data. To understand our procedure, first note that the total production of equipment capital by sector $i$ is:

$$I_{it}^{prod} = \sum_{a} \omega_{iat} I_{at}^{exp},$$

(21)

where $I_{at}^{exp}$ is total expenditures on equipment asset $a$ in year $t$ (from the Fixed Assets data), $I_{it}$ is the production of all equipment assets by sector $i$ (from the input-output data), and $\omega_{iat}$ is our bridge file to be estimated.

We initialize our estimate of the bridge file, $\tilde{\omega}_{iat}$ as either the bridge data from the last available year or a moving average of the two nearest bridge files. This estimate $\tilde{\omega}_{iat}$ may not satisfy the relationship (21) given our observations of $I_{it}^{prod}$ and $I_{at}^{exp}$. Let $\alpha_{it} = \frac{I_{it}^{prod}}{\sum_{a} \omega_{iat} I_{at}^{exp}}$ denote the ratio of true equipment production of sector $i$ to its production implied by the bridge file estimate. We use $\alpha_{it}$ to arrive at our final estimate of the bridge file:

$$\omega_{iat} = \frac{\alpha_{it} \tilde{\omega}_{iat}}{\sum_{j=1}^{N} \alpha_{ji} \tilde{\omega}_{jat}}.$$ (22)

Equation (22) ensures that the total investment production in each sector $i$ implied by the bridge file is equal to total investment production in the data. The key assumption

\textsuperscript{41}If the converted bridge file implies that a sector produces an equipment asset that the sector is not observed to produce in the detailed equipment production data in the years 1997-2018, we modify the conversion of NAICS to SIC sectors such that this sector does not produce that good in the final converted bridge file. However, these older bridge files only contain limited detail on margin sectors, making careful conversion to NAICS sectors infeasible. In order to ensure that we do not have a discontinuous break in margin payments by each sector at 1997, we take the total reported margins for each asset in these older bridge files and multiply them by the share of margins produced by each margin sector for that asset from the detailed equipment bridge files in 1997-2001.
is that the production of assets $a$ by sector $i$ always occur in proportion to $\omega_{iat}$.

### Additional Networks

#### Alternative sectoral disaggregation

While we use a 37-sector disaggregation in the main text, we can also incorporate the agriculture, state/local government, and federal government sectors. The agriculture sector can be incorporated following the same steps as above without modification. We incorporate government sectors by using the Input-Output tables directly because investment by federal and state/local governments is a final use. Thus, for each year in our data, each sector’s contribution to final production of government investment is directly observable in the data. We do not incorporate these sectors in the main text in order to focus on the private nonfarm economy.

We can also disaggregate the mining and real estate sectors more finely than in the main text. In particular, we can split the mining sector into oil & gas extraction, support activities for mining, and other mining, and we can split the real estate sector into real estate and rental/leasing services. We do not use these additional sectors in our baseline analysis because the way investment purchases and expenditures are allocated across these sectors is unusual (e.g., most of investment purchases by mining are produced by the support activities for mining sector, and the purely real estate sector is largely owner-occupied housing imputations). However, our results are robust to using this more detailed partition of sectors for the private non-farm economy.

#### Capital Rental Services

We also construct a capital rental services network, defined as the fraction of capital rental service expenditures by sector $j$, $R_{jt}K_{jt}$, purchased from all other sectors $i$ in the economy in year $t$. This rental services network may be useful for at least two reasons. First, as described in Footnote 8, it is consistent with the national accounting procedure described in Barro (2019). Second, the rental services network may be used to incorporate sectoral linkages in capital services in a static model.

As with the investment network, the rental services network combines rental expenditures of sector $j$ on asset $a$, $R_{jt}aK_{jt}$, with bridge files to infer from which sectors those assets were purchased. We compute $R_{jt}aK_{jt}$ using data on the nominal capital holdings of each sector $j$. 

56
for each asset $a$ in each year $t$, $P_t^a K_t^a$ from the BEA Fixed Assets data.\footnote{We assume that the rental rate of a given capital asset is specific to the asset $a$, not to the sector $j$ renting it. This assumption is consistent with BEA data showing that the price of capital assets is almost identical for the same asset across sectors.} We then combine that series with a time series for the real rental rate $\frac{R_t^a}{P_t^a}$, which we construct following the approach in Karabarbounis and Neiman (2019):

$$\frac{R_t^a}{P_t^a} = \frac{1 + \tau_t^x}{1 - \tau_t^k} \left[ \left( \frac{(1 + \tau_t^x) P_{t-1}^a}{(1 + \tau_t^k) P_t^a} \right) (1 + \tau_t^k) r_t - (1 - \delta_t^a) \frac{\tau_t^k \delta_t^a}{1 + \tau_t^x} \right]$$

(23)

where $\tau_t^x$ is the tax rate on investment, $\tau_t^k$ is the tax rate on capital income, $r_t$ is a measure of the real rate of return on capital, $P_t^a$ is the price of a new unit of capital (investment) of asset type $a$, and $\delta_t^a$ is the depreciation rate of asset $a$. We follow the same broad steps as Karabarbounis and Neiman (2019) (on their more aggregated data) in order to measure these objects:

(i) Real interest rate $r_t$: measured as the nominal rate of return on 10 year Treasuries net of expected inflation (measured as a five year moving average of observed PCE inflation) plus a 3% risk premium (which avoids negative values of the rental rate for particular sectors).

(ii) Price $P_t^a$: directly observed in NIPA tables 5.4.4, 5.5.4, and 5.6.4.

(iii) Taxes $\tau_t^x$ and $\tau_t^k$: directly from McDaniel (2007), which have been updated through 2017.

We then take a seven-year moving average of the real rental rate $\frac{R_t^a}{P_t^a}$ in order to smooth out high-frequency variations; Karabarbounis and Neiman (2019) use a five-year moving average, which leaves more noise in our disaggregated data.

We use the same bridge files $\omega_{iat}$ constructed above to allocate the production of new rental services for asset $a$ to various sectors $i$. Our key assumption is that the composition of sectors which produce new capital of asset $a$ is the same as the composition of sectors which produced the existing capital stock in the past as well. This assumption may fail if the sectors producing a particular capital asset $a$ have substantially changed over time, but that is unlikely to be an important issue for two reasons. First, we use a fairly detailed partition...
of capital assets a whose production patterns have not changed much over time. Second, the assets for which production has changed the most, such as computers and electronic equipment, also have the highest depreciation rates, implying that our bridge files for new investment correspond to a large fraction of the existing capital stock as well. That said, we also provide each of our equipment bridge files year-by-year, so other researchers can relax our assumption by cumulating the pairwise purchases of investment over time using the perpetual inventory method.\footnote{We do not make a correction for used goods when building the rental services tables because this correction is significantly more complex when considering the stock of all capital and not the period flows of investment.}

Given this modular approach, other researchers can construct rental services by asset in different ways — for example, reflecting a different formulation of the rental rate — and combine them with our bridge files to build their own rental services network. We provide networks with and without taxes (given that our model does not include taxes) as well as a network using rental rates net of depreciation.\footnote{In the case of the net rental services matrix, net rental rates are measured without taxes, with \( \frac{R^n_t}{P_t} = \left( \frac{P^n_{t+1}}{P^a_{t+1}} \right) (1 + r_t) - 1 \). We add an additional two percentage point risk premium and smooth changes in asset prices, \( \frac{P^n_{t+1}}{P^a_{t+1}} \), using a five year moving average in order to avoid negative net rental rates.} Figure A.1 plots the heatmap of our gross rental services table without taxes and shows that it is very similar to our investment network considered in the main text; the network with taxes and the network using net rental rates is similar to this one.

### A.3 Additional Analysis of Investment Network

This subsection presents two pieces of additional analysis of the investment network referenced in Section 2 of the main text.

#### Changes in Network Over Time

Figure A.2 compares the heatmaps of the investment network in the pre and post 1984 samples. Our four investment hubs are the primary suppliers of investment goods in each subsample. The main difference across subsamples is that professional/technical services accounts for a larger share of investment production in the post-1984 period.
We can further understand these changes by separately considering the investment networks for residential, non-residential structures, non-residential equipment, and intellectual property investment. For both residential investment and non-residential structures, the investment network is almost identical pre- and post-1984. However, Figure A.3 shows that the non-residential equipment and intellectual property networks have changed over time, reflecting the rise of IT; the equipment network places greater weight on computer manufacturing and professional/technical services, while the intellectual property network places greater weight on information. There have also been large changes in the composition of investment goods across these four broad categories. Pre-1984, the combination of residential investment and non-residential investment accounted for 54% of private investment; post-1984, that share has fallen to 43%. Simultaneously, the share of intellectual property investment in total private investment rose from 9% to 21%. The combination of these changes account

\[ \text{This decline is roughly 20 percentage points between 1948 to 2018, and even larger in some sectors.} \]
Notes: Heatmaps of the investment network $\lambda_{ij}$ are constructed as described in the main text. The $(i,j)$ entry of each network corresponds to parameter $\lambda_{ij}$, i.e., the amount of sector $i$'s good used in sector $j$. The pre-84 network corresponds to the years 1947-1983 and the post-84 network corresponds to the years 1984-2018.
Figure A.3: Heatmaps of Equipment and Intellectual Property Investment Networks, Pre/Post 1984

Notes: Heatmaps of the non-residential equipment and intellectual property investment networks are constructed from the bridge files as described in Appendix A.2. The pre-84 network corresponds to the years 1947-1983 and the post-84 network corresponds to the years 1984-2018. For the changes in the investment network over time.

Concentration of the Investment Network Table A.2 shows that the investment network is significantly more concentrated than the intermediates input-output network, measured using two metrics of network skewness. Carvalho and Tahbaz-Salehi (2019) discuss both of these metrics; intuitively, they compute a measure of centrality for each sector, which determines how important of a supplier it is to other sectors, and then compute the skewness of these centrality measures across sectors. A highly skewed set of centrality measures indicates that the network is dominated by a small number of highly important sectors. Across

46 We describe our measurement of the intermediates network, which follows standard procedure, in Section 3.
Table A.2
Skewness of Investment and Intermediates Networks

<table>
<thead>
<tr>
<th></th>
<th>Eigenvalue Centrality</th>
<th>Weighted Outdegree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investment network</td>
<td>3.32</td>
<td>2.70</td>
</tr>
<tr>
<td>Intermediates network</td>
<td>1.42</td>
<td>0.68</td>
</tr>
</tbody>
</table>

Notes: Eigenvalue centrality is defined as the eigenvector associated with the largest eigenvalue of the matrix. The weighted outdegree is defined as the sum over columns of the network matrix. Skewness of each of these centrality measures is computed as the sample skewness.

Table B.1
Volatility of Activity, Hubs vs. Manufacturing

<table>
<thead>
<tr>
<th></th>
<th>Investment Hubs</th>
<th>Non-Hubs</th>
<th>Non-Hub Manuf.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pre-84</td>
<td>Post-84</td>
<td>Pre-84</td>
</tr>
<tr>
<td>(\sigma(\Delta y_{st}))</td>
<td>9.13%</td>
<td>9.18%</td>
<td>6.63%</td>
</tr>
<tr>
<td>(\sigma(\Delta l_{st}))</td>
<td>6.14%</td>
<td>4.83%</td>
<td>3.81%</td>
</tr>
</tbody>
</table>

Notes: standard deviation of business cycle component of sector-level value added or employment. \(y_{st}\) is logged real value added in sector \(s\), \(l_{st}\) is logged employment in sector \(s\), and \(\Delta\) denotes the first difference operator. “Investment hubs” compute the unweighted average the value of these statistics over \(s =\) construction, machinery manufacturing, motor vehicles manufacturing, and professional/technical services. “Non-hubs” compute the unweighted average over the remaining sectors. “Non-hub manufacturing” computes the average over manufacturing sectors other than machinery and motor vehicles. “Pre-1984” performs this analysis in the 1948 - 1983 subsample and “post-1984” performs this analysis in the 1984 - 2018 subsample.

both measures of centrality, the investment network is on average roughly two to three times more skewed than the intermediates input-output network.

B Additional Results on Descriptive Evidence of Investment Hubs

This appendix present three pieces of additional analysis regarding the cyclical behavior of investment hubs referenced in Section 2 in the main text. First, Figure B.1 presents the correlogram between sector-level value added and aggregate GDP rather than aggregate employment as in Figure 2. Consistent with Figure 2, hubs are more correlated with aggregate GDP than are non-hubs, and this difference between hubs is larger in the post-1984 sample.
Figure B.1: Correlogram of Sector-level Value Added with Aggregate GDP

Notes: correlation of value added at sector $s$ in year $t + h$, $\Delta y_{st+h}$, with aggregate employment in year $t$, $\Delta y_t$. Both $y_{st+h}$ and $y_t$ are logged and $\Delta$ denotes the first-difference operator. The x-axis varies the lead/lag $h \in \{-2, -1, 0, 1, 2\}$. “Investment hubs” compute the unweighted average the value of these statistics over $s =$ construction, machinery manufacturing, motor vehicles manufacturing, and professional/technical services. “Non-hubs” compute the unweighted average over the remaining sectors. “Pre-1984” performs this analysis in the 1948 - 1983 subsample and “post-1984” performs this analysis in the 1984 - 2018 subsample.

Figure B.2: Correlogram of Sector-level Value Added with Aggregate Employment, Hubs vs. Manufacturing

Notes: correlation of log real value added in sector $s$ in year $t + h$, $y_{st+h}$, with log aggregate employment in year $t$, $l_t$. $\Delta$ denotes the first difference operator. The x-axis varies the lead/lag $h \in \{-2, -1, 0, 1, 2\}$. “Investment hubs” compute the unweighted average the value of these statistics over $s =$ construction, machinery manufacturing, motor vehicles manufacturing, and professional/technical services. “Non-hubs” compute the unweighted average over the remaining sectors. “Non-hub manufacturing” computes the average over manufacturing sectors other than machinery and motor vehicles. “Pre-1984” performs this analysis in the 1948 - 1983 subsample and “post-1984” performs this analysis in the 1984 - 2018 subsample.
Second, we address the concern that the empirical behavior of investment hubs is driven by the fact that two of four hubs are manufacturing sectors, and that manufacturing may be more cyclical than other sectors for reasons outside our model. We present two pieces of evidence against this concern. First, Table B.1 shows that non-hub manufacturing sectors are less volatile than investment hubs. Although they are more volatile than non-hub non-manufacturing sectors, we show in Section 4 and Appendix F that this result is consistent with our model because durable manufacturing sectors are key suppliers to investment hubs. Second, Figure B.2 shows that the correlation of non-hub manufacturing sectors with aggregate employment is close to that of the other non-hubs and lower than the corresponding correlation of the investment hubs.

C Equilibrium Conditions

This appendix collects the equilibrium conditions of our model.

**Households**  We simplify the household’s problem in two ways. First, the intratemporal consumption allocation decision implies that \( p_{jt}C_{jt} = \xi_j P^c_t C_t \), where \( P^c_t = \Pi_{j=1}^{N} (\frac{p_{jt}}{\xi_j})^{\xi_j} \) is the price index of the consumption bundle. We take the price of the consumption bundle \( P^C_t = 1 \) as our numeraire. Second, the intratemporal investment allocation decision for sector \( j \) implies that \( p_{it}I_{ijt} = \lambda_{ij} p_{jt}^I I_{jt} \), where \( p_{jt}^I = \Pi_{i=1}^{N} (\frac{p_{it}}{\lambda_{ij}})^{\lambda_{ij}} \) is the price index of the investment bundle for sector \( j \).

With these simplifications, the household’s problem is

\[
\max_{C_t,K_{jt+1},L_{jt}} \mathbb{E}_0 \left[ \sum_{t=0}^{\infty} \beta^t \left( \log C_t - \chi L_t \right) \right] \text{ s.t. } C_t + \sum_{j=1}^{N} p_{jt}^I (K_{jt+1} (1 - \delta_j) K_{jt}) \leq W_t L_t + \sum_{j=1}^{N} r_{jt} K_{jt}.
\]

The first order conditions for this problem are

\[
\frac{p_{jt}^I}{C_t} = \beta \mathbb{E}_t \left[ \frac{1}{C_{t+1}} (r_{jt+1} + p_{jt+1}^I (1 - \delta_j)) \right], \tag{24}
\]

\[
\chi = \frac{W_t}{C_t} \tag{25}
\]
Firms  Before solving the firm’s profit maximization problem, we note that its cost-minimization problem with respect to intermediate input mix implies that $p_{it}M_{ijt} = \gamma_{ij}p_{jt}^M M_{jt}$, where $p_{jt}^M = \Pi_{i=1}^N \left( \frac{p_{it}}{\gamma_{ij}} \right)^{\gamma_{ij}}$ is the price index of the materials bundle for sector $j$. The profit maximization problem is then

$$\max_{L_{jt}, K_{jt}, M_{jt}} p_{jt} Q_{jt} - W_t L_{jt} - r_{jt} K_{jt} - p_{jt}^M M_{jt},$$

where $Q_{jt} = A_{jt} \left( K_{jt}^{\alpha_j} L_{jt}^{1-\alpha_j} \right)^{\theta_j} M_{jt}^{1-\theta_j}$.

The first order conditions for this problem are

$$W_t = \theta_j (1 - \alpha_j) \frac{p_{jt} Q_{jt}}{L_{jt}}$$

$$r_{jt} = \theta_j \alpha_j \frac{p_{jt} Q_{jt}}{K_{jt}}$$

$$p_{jt}^M = (1 - \theta_j) \frac{p_{jt} Q_{jt}}{M_{jt}}.$$  

Note that constant returns to scale implies

$$W_t L_{jt} + r_{jt} K_{jt} + p_{jt}^M M_{jt} = p_{jt} Q_{jt}.$$  

Therefore, the accounting definition of nominal value added is simply $p_{jt} Q_{jt} - p_{jt}^M M_{jt} = w_t L_t + r_{jt} K_{jt}$, which is by definition $p_{jt}^Y Y_{jt}$.

To obtain real value added, we use the Divisia index definition, which differentiates the accounting definition of nominal value added holding prices fixed:

$$p_{jt}^Y dY_{jt} = p_{jt} dQ_{jt} - p_{jt}^M dM_{jt}$$

$$p_{jt}^Y Y_{jt} d \log Y_{jt} = p_{jt} Q_{jt} d \log Q_{jt} - p_{jt}^M M_{jt} d \log M_{jt}$$

$$\theta_j d \log Y_{jt} = d \log Q_{jt} - (1 - \theta_j) d \log M_{jt}$$

$$d \log Y_{jt} = \frac{1}{\theta_j} d \log A_{jt} + \alpha_j d \log K_{jt} + (1 - \alpha_j) d \log L_{jt}$$

Integrating this expression yields that real value added is given by $Y_{jt} = A_{jt}^{\theta_j} K_{jt}^{\alpha_j} L_{jt}^{1-\alpha_j}$.  

65
**Market Clearing**  Output market clearing for sector $j$ ensures that gross output is used for consumption, investment, or an intermediate in production:

$$Q_{jt} = C_{jt} + \sum_{i=1}^{N} I_{ijt} + \sum_{i=1}^{N} M_{ijt}. \quad (30)$$

Using the firms’ first order conditions for optimal investment and intermediates purchases, we can rewrite this condition to avoid the need to keep track of each intermediate purchase and consumption:

$$Q_{jt} = \xi_j C_t \frac{C_t}{p_{jt}} + \sum_{i=1}^{N} \lambda_{ji} p_{it}^I I_{it} - \sum_{i=1}^{N} (1 - \theta_i) \gamma_{ji} p_{it}^Q Q_{it} \quad (31)$$

**D Details of Model Calibration**

This appendix presents additional details on our model’s calibration. As discussed in the main text, we choose all of the parameters other than the shock process so that the model’s steady state corresponds to the average of the postwar U.S. economy. We then feed in the measured productivity shocks from the data.

**D.1 Steady State Parameters**

Figure D.1 plots our calibrated primary input shares $\theta_j$ for each sector $j$. We calibrate the share of intermediate inputs in production, $1 - \theta_j$, using the BEA input-output database. Given the Cobb-Douglas structure of our production function, the shares $\theta_j$ are pinned down by the ratio of value added to gross output at the firm level. We obtain this ratio for each year in our 1947-2018 sample and then compute their average value over time.

Figure D.2 plots the calibrated labor shares $1 - \alpha_j$ for each sector, averaged over 1947 - 2018.\(^47\) We correct for the fact that sector-level compensation in the BEA data does not include self-employed income by multiplying sectoral compensation by one plus the ratio of self-employed employment to total part-time and full-time employment in the sector.\(^48\)

\(^47\)For years prior to 1987, we convert SIC based data to NAICS using the crosswalk in Fort and Klimek (2018).

\(^48\)This operation implicitly assumes that average compensation for self-employed workers is the same as
Figure D.1: Calibrated Value Added Shares $\theta_j$

![Calibrated Value Added Shares $\theta_j$](image)

Notes: Values for the value-added shares $\theta_j$ are computed as the ratio of value added to gross output in each sector, averaged across the entire sample, 1947-2018.

We then compute the labor share as the ratio of adjusted compensation to value added in that sector minus indirect taxes and subsidies. Our results are also robust to making no adjustments for self-employment.

Figure D.3 plots our calibrated depreciation rates, $\delta_j$, which are equal to the average implied depreciation rate reported in the Fixed Assets database from 1947-2018. Figure D.4 plots our calibrated Cobb-Douglas preference parameters weighting consumption in different sectors’ output, $\xi_j$. We measure $\xi_j$ as the share of total consumption expenditures purchased from sector $j$.

---

non-self-employed workers. The BEA data on self-employment by sector covers a coarse set of sectors, so we apply the self-employment to employment ratio to each sector based on the finest available sector in the self-employed data. The one exception is for the management of companies and enterprises, for which we assume that there is no self-employment. If we allowed for self-employment in that sector, the implied labor share often exceeds one.
Figure D.2: Calibrated Labor Shares 1 − α_j

Notes: Values for the labor share 1 − α_j are computed from sectoral data on compensation (adjusted for self-employment) divided by value added (with indirect taxes and subsidies removed), averaged across all years in the data, 1947-2018.

D.2 Measured Sector-Level Productivity Series

We measure sector-level TFP using the Solow residual approach. In particular, we compute TFP for sector j in year t as

$$\log A_{jt} = \log Q_{jt} - \theta_{jt} \alpha_{jt} \log K_{jt} - \theta_{jt}(1 - \alpha_{jt}) \log L_{jt} - (1 - \theta_{jt}) \log M_{jt},$$

where the factor shares vary over time in order to capture changes in the production technology that are outside our model (our results are robust to fixing the factor shares over time). Annual sector value added, employment, and intermediates are measured as described in Appendix A. We construct the capital stock for each sector in each year using the perpetual inventory method using the nominal year-end capital stock for each sector in 1948 as our starting point (from BEA Fixed Assets data). We then use the annual implied depreciation rates and real quantities of investment for each sector to iterate forward the capital accumulation process and generate a time series of capital for each sector.
Figure D.3: Calibrated Depreciation Rates $\delta_j$

Notes: Values for sector-level depreciation rates $\delta_j$ are taken as each sector’s average implied depreciation rate from BEA Fixed Assets data, averaged from 1947-2018.

Figure D.4: Calibrated Consumption Shares $\xi_j$

Notes: Values for consumption preference $\xi_j$ are constructed as the fraction of total nominal consumption expenditures on each sector’s goods or services, averaged over the entire sample 1947-2018.
Notes: The figure reports log sector level TFP for the Construction and Machinery Manufacturing sectors, normalized to zero in the year 1948. We also report a fitted polynomial trend lines for polynomials of order 1, 2, and 4, estimated via OLS.

We detrend our model using a log-polynomial trend because log-linear trends provide a poor fit to sector-level TFP. Figure D.5 plots the time series of sector-level TFP for two example sectors, construction and machinery manufacturing. Construction TFP evolves nonlinearly over time; a third or fourth order polynomial trend is required to capture these nonlinearities. In contrast, machinery manufacturing evolves more linearly, but a polynomial trend continues to fit better than a linear one. We choose a fourth order trend for the main text in order to balance these nonlinearities against overfitting the data. However, we show in Appendix G that our main results are robust to using lower-order polynomials for detrending. Figure D.6 plots the persistence parameters $\rho_j$, which we estimate using maximum likelihood on detrended log-TFP.

**Interpreting changes in productivity over time using principal components** In the main text, we interpreted the decline in the correlation of TFP across sectors as reflecting a decline in the variance in the volatility of aggregate shocks which affect all sectors

49We do not present the third order trends in this figure for parsimony, but they are generally more similar to fourth order trends than to the second order trends.
Notes: Persistence parameters $\rho_j$ of sector-level TFP are estimated from detrended TFP using maximum likelihood.

in the economy. We now provide further support for this interpretation using a principal components decomposition similar to Garin, Pries and Sims (2018). Performing that principal components exercise requires us to estimate a full rank covariance matrix for TFP pre- and post-1984, which we cannot do with 37 sectors and less than 37 years of data in each time period. We therefore collapse our data down to 30 sectors by condensing all non-durable manufacturing sectors into one sector and then perform the principal components decomposition on log TFP growth for 30 sectors pre- and post-1984.\textsuperscript{50}

Table D.1 reports the results of this principal components exercise. The first principal component – which can be loosely interpreted as the aggregate shock – accounts for 75% of the variance of aggregate TFP in the pre-1984 sample, but only 35% of the variance in the post-1984 sample. Furthermore, the variance of the residual component – which can be loosely interpreted as the sector-specific shocks – declines by much less over time.

\textsuperscript{50}We could have alternatively collapsed a different set of sectors, but we prefer this approach because: (i) aggregating within non-durable manufacturing does not affect the investment hubs or their key suppliers, (ii) many non-durable manufacturing sectors are small, (iii) and the aggregated sector of non-durable manufacturing is more intuitive than aggregates of alternative sets of service sectors.
Table D.1
Principal Components Analysis of Measured TFP

<table>
<thead>
<tr>
<th>Sample period</th>
<th>1000\Var(\Delta \log A_t)</th>
<th>Due to 1st component</th>
<th>Residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>1949-1983</td>
<td>0.41</td>
<td>0.31 (75%)</td>
<td>0.10 (25%)</td>
</tr>
<tr>
<td>1984-2017</td>
<td>0.09</td>
<td>0.03 (35%)</td>
<td>0.06 (65%)</td>
</tr>
</tbody>
</table>

Notes: the aggregate shock is equal to the vector product of the loadings associated with the first principal component with the vector of sector-level TFP. We then regress aggregate TFP on this constructed aggregate shock and report the explained sum of squares and $R^2$ (the variance attributable to the 1st component) and the sum of squared errors (the variance attributable to the residual, interpreted as sectoral shocks).

E Proofs

This appendix proves the three propositions in Section 4.

Proof of Proposition 1  Plug in the definition of sector-level real value added $Y_{jt}$ (omitting capital, because it is fixed upon impact) to the Divisia index to get

$$d \log Y_t = \sum_{j=1}^{N} \left( \frac{p_j Y_j t}{P^Y Y_t} \right) \left( \frac{1}{\theta_j} d \log A_{jt} + (1 - \alpha_j) d \log L_{jt} \right). \tag{32}$$

The intermediates first order condition (28) and the zero profit condition (29) imply that $\theta_j$ is equal to the ratio of value added to gross output: $\theta_j = \frac{p_j Y_j t}{p_j Q_j t}$. Therefore, the weight on TFP in the sum (32) is $\frac{p_j Y_j t}{P^Y Y_t} = \frac{p_j Q_j t}{P^Y Y_t}$, the Domar weight.

The labor first order condition (26) can be rearranged to $(1 - \alpha_j) \theta_j p_j Q_j t = W_t L_{jt}$. But again, the zero profits condition implies that $\theta_j p_j Q_j t = p_j Y_j t$, so this condition becomes $(1 - \alpha_j) p_j Y_j t = W_t L_{jt}$. Divide this expression by nominal GDP to get $(1 - \alpha_j) \frac{p_j Y_j t}{P^Y Y_t} = \frac{W_t L_{jt}}{P^Y Y_t}$.

Then sum over sectors $j$ to get $1 - \alpha_t \equiv \sum_{j=1}^{N} (1 - \alpha_j) \frac{p_j Y_j t}{P^Y Y_t} = \frac{W_t L_{jt}}{P^Y Y_t}$, the aggregate labor share. Then multiply this expression by $\frac{L_{jt}}{L_t}$ and combine with the previous expression to get

$$(1 - \alpha_t) \frac{L_{jt}}{L_t} = \frac{W_t L_{jt}}{P^Y Y_t} = (1 - \alpha_j) \frac{p_j Y_j t}{P^Y Y_t} \frac{L_{jt}}{L_t}. \tag{32}$$

Plugging all this into the expression for real GDP growth (32) gives

$$d \log Y_t = \sum_{j=1}^{N} \left( \frac{p_j Q_j t}{P^Y Y_t} d \log A_{jt} + (1 - \alpha_t) \frac{L_{jt}}{L_t} d \log L_{jt} \right).$$

72
Under a first-order approximation fluctuations in either the Domar weight \( \frac{p_{jt}Q_{jt}}{P_t Y_t} \) or the employment share \( (1 - \alpha_t) \frac{L_{jt}}{L_t} \) multiply TFP growth or employment growth, which are zero in steady state. This insight yields the result in Proposition 1.

**Proof of Proposition 2** The market clearing condition for sector \( j \) in terms of overall expenditures is \( p_{jt}Q_{jt} = p_{jt}C_{jt} + \sum_{i=1}^{N} p_{jt}I_{jit} + \sum_{i=1}^{N} p_{jt}M_{jit} \). Due to the Cobb-Douglas production functions, sector \( i \)'s expenditures on intermediates from sector \( j \) is simply proportional to sector \( i \)'s total sales: \( p_{jt}M_{jit} = (1 - \theta_i)\gamma_{ji}p_{it}Q_{it} \). Similarly, sector \( i \)'s expenditures on investment goods from sector \( j \) is \( p_{jt}I_{jit} = \lambda_{ji}p_{it}I_{it} \), where \( p_{it} = \Pi_{k=1}^{N} \left( \frac{p_{kt}}{\lambda_{ki}} \right)^{\lambda_{ki}} \) is the price index for investment (derived in Appendix C). Therefore, total expenditure on sector \( j \) is

\[
p_{jt}Q_{jt} = p_{jt}C_{jt} + \sum_{i=1}^{N} \lambda_{ji}p_{it}I_{it} + \sum_{i=1}^{N} (1 - \theta_i)\gamma_{ji}p_{it}Q_{it}. \tag{33}
\]

For notational convenience, define

\[
\hat{Q}_t = \begin{bmatrix} p_{1t}Q_{1t} \\ \vdots \\ p_{Nt}Q_{nt} \end{bmatrix}, \quad \hat{C}_t = \begin{bmatrix} p_{1t}C_{1t} \\ \vdots \\ p_{Nt}C_{nt} \end{bmatrix}, \quad \text{and} \quad \hat{I}_t = \begin{bmatrix} p_{1t}I_{1t} \\ \vdots \\ p_{Nt}I_{nt} \end{bmatrix}.
\]

Then the market clearing condition (33) can be written in matrix form as \( \hat{Q}_t = \hat{C}_t + \Lambda'\hat{I}_t + \Gamma'\hat{Q}_t \), where \( \Lambda \) is the investment network matrix. Solve out this expression for \( \hat{Q}_t \) to get

\[
\hat{Q}_t = (I - \Gamma')^{-1} \left( \hat{C}_t + \Lambda'\hat{I}_t \right).
\]

Writing this equation for element \( j \), dividing by aggregate consumption \( C_t \), and noting that \( (I - \Gamma')^{-1} \) is the Leontief inverse yields Proposition 2 in the main text.
Proof of Proposition 3 Using the first order conditions for the profit maximization problem, equations (26)-(28), we can write the price of each sector $j$’s final good as:

$$p_{jt} = \frac{1}{A_{jt}} \left( \frac{r_{jt}}{\alpha_j \theta_j} \right)^{\alpha_j \theta_j} \left( \frac{W_t}{(1 - \alpha_j) \theta_j} \right)^{(1 - \alpha_j) \theta_j} \left( \frac{P_{jt}^M}{1 - \theta_j} \right)^{1 - \theta_j}$$

$$= \frac{1}{A_{jt}} \left( \frac{r_{jt}}{\alpha_j \theta_j} \right)^{\alpha_j \theta_j} \left( \frac{W_t}{(1 - \alpha_j) \theta_j} \right)^{(1 - \alpha_j) \theta_j} \left( \prod_{i=1}^{N} \left( \frac{p_{it}}{\gamma_{ij}} \right)^{\gamma_{ij}} \right)^{1 - \theta_j}$$

using the fact that $p_{jt}^M = \prod_{i=1}^{N} \left( \frac{p_{it}}{\gamma_{ij}} \right)^{\gamma_{ij}}$.

Taking the log of both sides gives us:

$$\log p_{jt} = -\log A_{jt} + \alpha_j \theta_j \log r_{jt} + (1 - \alpha_j) \theta_j \log W_t + \sum_{i=1}^{N} (1 - \theta_j) \gamma_{ij} \log p_{it} + \Phi_j$$

where $\Phi_j = \log \left( \frac{1}{\alpha_j \theta_j} \left( \frac{1}{(1 - \alpha_j) \theta_j} \right)^{(1 - \alpha_j) \theta_j} \prod_{i=1}^{N} \left( \frac{1}{\gamma_{ij}} \right)^{\gamma_{ij}} \right)^{1 - \theta_j}$.

To assess the direct effect of a TFP shock on output prices, we totally differentiate the above expression, holding fixed any response of the rental rates or wages, obtaining:

$$d \log p_{jt} = -d \log A_{jt} + \sum_{i=1}^{N} (1 - \theta_j) \gamma_{ij} d \log p_{it}$$

Or in matrix notation,

$$d \log p_t = -d \log A_t + \Gamma' d \log p_t$$

$$d \log p_t = -L' d \log A_t$$

where $d \log p_t$ is an $N \times 1$ vector of sector-level prices and $d \log A_t$ is the vector of sector-level productivity.

To relate this to the investment price index, we use the fact that $p_{jt}^I = \prod_{i=1}^{N} \left( \frac{p_{it}}{\lambda_{ij}} \right)^{\lambda_{ij}}$ and
thus:

\[ d \log p_t^I = \Lambda' d \log p_t \]
\[ = - (\mathcal{L} \Lambda)' d \log A_t \]

In non-matrix notation, this implies the result that \( d \log p_{mt}^I = - \sum_{i=1}^{N} \omega_{im} d \log A_{it} \), yielding the proposition in the text.

**F Additional Results For Section 4**

This appendix describes additional results mentioned in Section 4 of the main text.

**F.1 Relationship to Investment-Specific Shock Literature**

The role of investment hub shocks in driving fluctuations in our model is reminiscent of the large literature on investment-specific technology shocks (see, for example, Greenwood, Hercowitz and Krusell (2000) or Justiniano, Primiceri and Tambalotti (2010)). This literature typically works with two-sector models in which one sector produces only consumption goods and the other only produces investment goods with no intermediate goods connections between them. Of course, our model provides a richer sectoral disaggregation to bring the model to the data. It also shows that the correct notion of the “investment producers” includes the key suppliers of investment hubs in the Leontief-adjusted investment network.

An equally important but more subtle issue is that the investment-specific shock literature struggles to generate positive comovement between the consumption- and investment-producing sectors because it abstracts from intermediate goods. To help understand this issue, rewrite equation (12) without the intermediates network:

\[ d \log L_{jt} = \sum_{m=1}^{N} \lambda_{jm} \left( \frac{p_{mt}^{I_m} I_{mt}^{*}}{p_{jt}^{*} Q_{jt}} \right) \left( d \log p_{mt}^I I_{mt} - d \log C_t \right) , \]

which is the same as (12) in the main text except that the Leontief-adjusted investment network is equal to the raw network: \( \Omega = \Lambda \). Following the same logic in the main text, only
Figure F.1: Elasticity of Aggregate Employment to Sectoral Shocks Without Intermediates Network

![Graph showing elasticity of aggregate employment to sectoral shocks without intermediates network.](image)

Notes: reduced-form elasticities of aggregate employment $N_t$ to sector-specific shocks $A_{it}$ in a version of the model without intermediate goods (i.e. $\theta_j = 0$ for all $j$). For each sector, we simulate the model with $\sigma(\log A_{it}) = 1\%$ shocks to that sector only. The bars plot the volatility of aggregate employment $\sigma(\log N_t)$. Investment hubs are highlighted in red.

Employment in the investment hubs will meaningfully fluctuate over time because the other sectors have a small role in producing investment goods (i.e. $\lambda_{jm}$ is small for non-hub sectors $j$). In addition, only shocks to the investment hubs will generate employment fluctuations because shocks to other sectors have a small effect on aggregate investment supply.

Figure F.1 illustrates these issues in the version of our model without the intermediates network. Analogously to Figure 5, the figure computes the elasticity of aggregate employment with respect to a sector-specific shock $A_{it}$ in each sector. Only the shocks to the investment hubs, highlighted in red, have a meaningful impact on aggregate employment. Furthermore, their effect on aggregate employment is primarily limited to employment in the hubs themselves.\(^{51}\)

\(^{51}\)The fact that employment comovement between hubs and non-hubs approaches zero in this example, rather than being negative, reflects our use of an infinite Frisch elasticity $\eta \to \infty$. With finite Frisch $\eta$, an increase in an investment hub sector also increases the marginal disutility of supplying labor to non-hub sectors, which would decrease employment in those sectors and generate negative comovement. See Kim and Kim (2006) for further discussion of the role of the Frisch elasticity $\eta$ in determining sectoral comovement.
Table F.1
VOLATILITY OF ACTIVITY, HUBS VS. INTERMEDIATE SUPPLIERS

<table>
<thead>
<tr>
<th></th>
<th>Investment Hubs</th>
<th>Suppliers</th>
<th>Others</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Data</strong></td>
<td>Pre-84 Post-84</td>
<td>Pre-84 Post-84 Pre-84 Post-84</td>
<td></td>
</tr>
<tr>
<td>(\sigma(\Delta y_{st}))</td>
<td>9.13% 9.18%</td>
<td>8.03% 6.72%</td>
<td>5.94% 4.90%</td>
</tr>
<tr>
<td>(\sigma(\Delta l_{st}))</td>
<td>6.14% 4.83%</td>
<td>6.04% 4.04%</td>
<td>2.70% 2.69%</td>
</tr>
<tr>
<td><strong>Model</strong></td>
<td>Pre-84 Post-84</td>
<td>Pre-84 Post-84 Pre-84 Post-84</td>
<td></td>
</tr>
<tr>
<td>(\sigma(\Delta y_{st}))</td>
<td>12.92% 9.63%</td>
<td>9.02% 7.03%</td>
<td>5.57% 4.93%</td>
</tr>
<tr>
<td>(\sigma(\Delta l_{st}))</td>
<td>9.37% 6.65%</td>
<td>5.93% 4.28%</td>
<td>1.68% 1.18%</td>
</tr>
</tbody>
</table>

Notes: standard deviation of business cycle component of sector-level value added or employment. \(y_{st}\) is logged real value added in sector \(s\), \(l_{st}\) is logged employment in sector \(s\), and \(\Delta\) denotes the first difference operator. “Investment hubs” compute the unweighted average the value of these statistics over \(s =\) construction, machinery manufacturing, motor vehicles manufacturing, and professional/technical services. “Suppliers” computes the weighted average over the non-hub sectors of durable manufacturing, wholesale trade, and transportation & warehousing. “Others” computes the unweighted average over the sectors not classified as investment hubs or suppliers. “Pre-1984” performs this analysis in the 1948 - 1983 subsample and “post-1984” performs this analysis in the 1984 - 2018 subsample.

Our model solves these comovement issues through the intermediates network; as discussed in the main text, intermediates connections to the investment hub generate employment fluctuations throughout the economy.\(^{52}\) In contrast, the investment-specific shocks literature uses other nominal or real rigidities to overcome the negative comovement problem.

Another debate in this literature concerns how to measure investment-specific technology shocks. One approach is to use the price of investment goods relative to consumption goods; however, this price series is only weakly correlated with the aggregate cycle, so it is difficult to generate large business cycle fluctuations with it. In our model, investment-specific shocks can be directly measured as the productivity at investment hub sectors and their key suppliers. Section 5 shows that these shocks generate substantial cyclical fluctuations.

F.2 Supporting Evidence for Mechanism in the Data

We present supporting evidence for the role of the key suppliers to investment hubs discussed in 4. Table F.1 shows that the key suppliers to investment hubs are more volatile over the

Figure F.2: Correlogram of Sector-level Value Added with Aggregate Employment, Hubs vs. Intermediate Suppliers

Notes: correlation of log real value added in sector $s$ in year $t - h$, $y_{st+h}$, with log aggregate employment in year $t$, $l_t$. $\Delta$ denotes the first difference operator. The x-axis varies the lead/lag $h \in \{-2, -1, 0, 1, 2\}$.

“Investment hubs” compute the unweighted average the value of these statistics over $s =$ construction, machinery manufacturing, motor vehicles manufacturing, and professional/technical services. “Intermediate Suppliers” computes these statistics for the remaining durable manufacturing sectors, wholesale trade, and transportation & warehousing. “Non-hubs” computes the unweighted average over the remaining sectors. “Pre-1984” performs this analysis in the 1948 - 1983 subsample and “post-1984” performs this analysis in the 1984 - 2018 subsample.

business cycle than other non-hub sectors, consistent with the role of the Leontief-adjusted investment network in propagating shocks. The model provides a good fit for the behavior of these sectors, especially for employment. The table also shows that the suppliers are less volatile than the hubs themselves, again consistent with the model. Figure F.2 shows that the key suppliers to investment hubs are more correlated with the aggregate business cycle than other non-hub sectors, consistent with their role in propagating sector-specific shocks to aggregates.

F.3 Cobb-Douglas Capital Accumulation

We now show that employment is constant in the version of the model in which we replace the standard linear capital accumulation rule, $K_{jt+1} = (1 - \delta_j)K_{jt} + I_{jt}$, with a Cobb-Douglas one:

$$K_{jt+1} = K_{jt}^{1-\delta_j} I_{jt}^\delta_j.$$  \hspace{1cm} (34)
While this alternative rule (34) is inconsistent with national accounting practice, and thus not suitable for a quantitative model, it is nonetheless useful in explaining how investment drives our results. In particular, we will show that the Cobb-Douglas form (34) implies that investment expenditure is proportional to total income, which in turn implies that sector-specific shocks generate exactly offsetting income and substitution effects which leave employment unchanged.\footnote{We thank Matt Rognlie for pointing this property out to us in the one-sector RBC model.}

The alternative capital accumulation rule changes the Euler equation for capital (24) into

$$\frac{p_t^J I_{jt}}{C_t} \frac{1}{\delta_j K_{jt+1}} = \beta \mathbb{E}_t \left[ \frac{1}{C_{t+1}} \left( \alpha_j \theta_j \frac{p_{jt+1} Q_{jt+1}}{K_{jt+1}} + \frac{(1 - \delta_j) p_{jt+1} I_{jt+1}}{\delta_j} \right) \right],$$

which can be rearranged into

$$\frac{p_t^J I_{jt}}{C_t} = \beta \mathbb{E}_t \left[ \delta_j \alpha_j \theta_j \frac{p_{jt+1} Q_{jt+1}}{C_{t+1}} + (1 - \delta_j) \frac{p_{jt+1} I_{jt+1}}{C_{t+1}} \right]. \tag{35}$$

We now guess and verify that the household’s valuation of output and investment are constant over time. Denote those constants as $I_j^* = \frac{p_t^J I_{jt}}{C_t}$ and $Q_j^* = \frac{p_t^J Q_{jt}}{C_t}$. The Euler equation (35) relates these two objects through

$$I_j^* = \frac{\beta \delta_j \alpha_j \theta_j}{1 - \beta (1 - \delta_j)} Q_j^*, \tag{36}$$

Now define $B_j = \frac{\beta \delta_j \alpha_j \theta_j}{1 - \beta (1 - \delta_j)}$ and $B$ to be the matrix with $B_j$ on the diagonals and zero off-diagonal.

We now plug (36) into the expression for the household’s value of output (11) in order to solve for $Q_j^*$ and $I_j^*$. We will write the market clearing condition in matrix form using the notation

$$Q^* = \begin{bmatrix} Q_1^* \\ \vdots \\ Q_N^* \end{bmatrix} \quad \text{and} \quad \hat{\xi} = \begin{bmatrix} \xi_1 \\ \vdots \\ \xi_N \end{bmatrix}.$$
becomes
\[ \hat{Q}^* = \mathcal{L}\xi + \beta\mathcal{L}\Lambda'B\hat{Q}^*, \]
where the second term on the right-hand side uses the fact that \( I_j^* = B_jQ_j^* \) from (36). Solving this equation for \( Q^* \) yields
\[ Q^* = (I - \beta\mathcal{L}\Lambda'B)^{-1}\mathcal{L}\xi \]
\[ = \sum_{s=0}^{\infty} (\beta\mathcal{L}\Lambda'B)^s \mathcal{L}\xi \] (37)

Equation (37) shows that the household’s valuation of output equals the discounted sum of its value of consumption, taking into account the ability to transfer resources over time using investment.

The only condition we need to verify is that our guessed equilibrium is consistent with constant labor supply. Given our growth-consistent preferences, we indeed have that \( L_j^* = \theta_j(1 - \alpha_j)\chi Q_j^* \) is constant over time.

Hence, the Cobb-Douglas capital accumulation equation (34) implies that investment — and the investment network — are irrelevant for aggregate dynamics beyond their impact on the steady state Domar weights. Intuitively, the Cobb-Douglas capital accumulation equation implies that investment expenditures are proportional to total income, which in turn is proportional to gross output. Therefore, sector-specific shocks generate equal-sized income and substitution effects, just as in the model without investment.

Our full model with the linear capital accumulation rule breaks this irrelevance result by increasing the elasticity of the capital stock with respect to current investment.\(^{54}\) In this case, changes in current investment have a larger effect on the capital stock, breaking the result that investment expenditures are proportional to output. This property allows the household’s valuation of output, and therefore employment, to fluctuate over time.

**Relationship to Full Depreciation** It is well-known that the one-sector RBC model, with the standard linear capital accumulation rule, admits a closed-form solution with con-

\(^{54}\)Of course, with the linear accumulation rule, that elasticity becomes infinite; more generally, we conjecture that increasing the elasticity beyond the Cobb-Douglas case will generate fluctuations in employment.
Figure F.3: Stationary Distribution of Domar Weights

Notes: average values of the Domar weights \( E[p_j Q_j] \) in the model (the steady state) and the data (averaged over the entire sample 1948-2018).

stant employment in the case of full depreciation. The discussion above makes clear that full depreciation is just a special case of the Cobb-Douglas capital accumulation rule (34) with \( \delta_j = 1 \); indeed, it is the only value of \( \delta_j \) for which the linear and Cobb-Douglas capital accumulation rules are the same.

F.4 Other Analysis Mentioned in Main Text

This subsection collects a number of miscellaneous results referenced in Section 4.

Distribution of Domar weights Figure F.3 shows that the model fits the stationary distribution of Domar weights fairly well. In the model, a sector’s Domar weight is equal to its role in supplying consumption and investment goods. The Domar weights at investment hubs are not abnormally large because investment is a smaller fraction of overall spending than consumption.
Figure F.4: Cyclicality of Labor Productivity Due to Sectoral Shocks

Notes: cyclicality of labor productivity, \( \text{Corr}(\log Y_t - \log L_t, \log Y_t) \) in response to sector-specific shocks \( A_{it} \). For each sector, we simulate the model with \( \sigma(\log A_{it}) = 1\% \) shocks to that sector only. Investment hubs are highlighted in red.

Cyclicality of Labor Productivity Due to Sectoral Shocks

Subtracting aggregate employment from our expression for real GDP in Proposition 1, the impact effect of a sector-specific shock \( A_{it} \) on aggregate labor productivity \( LP_t \) is

\[
d\log LP_t = \sum_{j=1}^{N} \left( \frac{p_j Q_j}{PY} \right)^* d\log A_{jt} - \alpha^* \sum_{j=1}^{N} \left( \frac{L_j}{L} \right)^* d\log L_{jt}
\]

All else equal, higher aggregate TFP increases labor productivity because it increases the productivity of all factors; on the other hand, higher aggregate employment decreases labor productivity because of decreasing returns to scale in labor (which implies that the aggregate capital share \( \alpha^* > 0 \)). Hence, shocks which increase weighted employment \( \alpha^* d\log L_t \) by more than the sector's steady state Domar weight (which determines the response of aggregate TFP) will decrease labor productivity.

Figure F.4 shows that shocks to nearly all of the investment hubs and their intermediate suppliers decrease labor productivity. The figure plots the cyclicality of aggregate labor...
productivity in response to 1% sector-specific shocks to each sector in isolation. Shocks to investment hubs and their suppliers generally increase aggregate employment substantially more than their sectors’ Domar weights to decrease labor productivity. The exceptions are professional/technical services, wholesale trade, and transportation & warehousing in the right of the figure. While these sectors have sizeable effects on employment, the sectors are also well-connected in the intermediates network and therefore also have large Domar weights.

**Numerical Exploration of Sectoral Investment Response to Shocks** We now provide numerical comparative statics to understand the mapping from sectoral shocks to the household’s valuation of aggregate investment, \( \frac{\nu_j I_t}{C_t} = \sum_j \frac{\nu_j I_{jt}}{C_t} \) (Proposition 2 shows how employment responds to changes in the household’s valuation of investment). Figure F.5 plots the elasticity of the household’s valuation of aggregate investment in response to sector-specific shocks to each sector. The blue bars show that this elasticity is very similar to the elasticity of aggregate employment in response to the shocks plotted in Figure 5 in the main text, consistent with Proposition 2.\(^{55}\)

Figure F.5 also shows that the distribution of these elasticities across sectors is primarily determined by the Leontief-adjusted investment network. In particular, the grey bars in Figure F.5 plot the elasticities in which all these other parameters are set equal to the average value across sectors.\(^{56}\) In this case, variation in these elasticities is solely determined by heterogeneity in the Leontief-adjusted investment network. The blue and grey bars are fairly similar, consistent with the idea that heterogeneity in the Leontief-adjusted investment network is the primary source of differences across sectors. The main exception is the effect of a shock to construction, which is also shaped by the low depreciation rate of residential structures and the abnormally high capital share in real estate (detailed results available

\(^{55}\)Given the result of Proposition 2, we can write changes in aggregate employment as \( dL_t = \sum_j dL_{jt} = \sum_j \sum_m \omega_{jm} d \left( \frac{\nu_j I_{mnt}}{C_{mt}} \right) = \sum_m d \left( \frac{\nu I_{mnt}}{C_{mt}} \right) \sum_j \omega_{jm}. \) The result that the numerical response of aggregate employment is proportional to the numerical response of the aggregate household’s valuation of investment, \( dL_t = \phi d I_t \) will obtain if the row sums of \( \omega_{jm} \) are the same across sectors. This is exactly true in the case where there are no intermediate goods, since in that case, the Leontief-adjusted network is equal to the investment network, whose rows sum to 1 by construction.

\(^{56}\)The parameters are depreciation rates \( (\delta_j) \), capital shares \( (\alpha_j) \), value added shares of gross output \( (\theta_j) \), the persistence of TFP shocks \( (\rho_j) \), and consumption shares \( (\xi_j) \).
Notes: reduced-form elasticities of the household’s valuation of aggregate investment, $\frac{\nu_i(t)}{C_t}$ to sector-specific shocks $A_{it}$. For each sector, we simulate the model with $\sigma(\epsilon_{it}) = 1\%$ shocks to that sector only. The bars plot the volatility of household’s valuation of aggregate investment $\sigma(\log \frac{\nu_i(t)}{C_t})$ divided by the volatility of sector-specific TFP $\sigma(\log A_{it})$. The grey bars show this elasticity where all non-network parameters are set to the mean across sectors.

upon request).

**G Additional Results on Changing Business Cycles**

We now provide several additional results referenced in Section 5 of the main text.

**G.1 Investment Production Frictions**

In this subsection, we detail how the investment production frictions from Section 5 impact the equilibrium conditions of our model and then show that our results are robust to varying the strength of these frictions.
**Equilibrium conditions**  The investment production frictions change the output market clearing condition to be:

\[ Q_{jt} = C_{jt} + \sum_{i=1}^{N} M_{ijt} + \left( \sum_{i=1}^{N} I_{ijt}^{-\rho} \right)^{-\frac{1}{\rho}} \]  

(38)

Define the total production of investment goods by sector \( j \) as \( Z_{jt} = \left( \sum_{i=1}^{N} I_{ijt}^{-\rho} \right)^{-\frac{1}{\rho}} \). Then the intratemporal investment allocation decision becomes:

\[ p_{it} \left( \frac{Z_{jt}}{I_{ijt}} \right)^{1+\rho} = \lambda_{ij} p_{jt} I_{jt} \]  

(39)

The corresponding cost-minimization problem implies that the price index of a new unit of investment for sector \( j \) is now:

\[ p_{jt} = \prod_{i=1}^{N} \left( \frac{p_{it}}{\lambda_{ij}} \right)^{\lambda_{ij}} \prod_{i=1}^{N} \left( \frac{Z_{jt}}{I_{jt}} \right)^{(1+\rho)\lambda_{ij}} \]  

(40)

Therefore, the price of purchasing an investment good is now specific to the producer-purchaser pair; an increase in investment demand from a given sector will put upward pressure on its price index for investment goods, dampening fluctuations in investment.

Importantly, this extension of the model does not change the results in any of the propositions presented in Section 4. Proposition 1 only relies on the definition of value added, which is unaffected by this friction. Proposition 2 does rely on the resource constraint, which has now been modified, but that modification does not change those results; to see this fact, note that we can solve for \( Z_{jt} \) using equation (40) above:

\[ Z_{jt} = \left( \sum_{i=1}^{N} I_{ijt}^{-\rho} \right)^{-\frac{1}{\rho}} = \left( \sum_{i=1}^{N} \frac{\lambda_{ji} p_{it}^{-\rho} I_{it}}{p_{jt} Z_{jt}^{1+\rho}} \right)^{-\frac{1}{\rho}} = \sum_{i=1}^{N} \frac{\lambda_{ji} p_{it}^{-\rho} I_{it}}{p_{jt}} \]
### Table G.1

**ROBUSTNESS WITH RESPECT TO INVESTMENT PRODUCTION FRICtIONS**

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma(\Delta y_t)$</td>
<td>3.95%</td>
<td>2.42%</td>
<td>3.97%</td>
<td>2.64%</td>
<td>3.86%</td>
<td>2.38%</td>
</tr>
<tr>
<td>$\rho(\Delta y_t - \Delta l_t, \Delta y_t)$</td>
<td>0.52</td>
<td>-0.01</td>
<td>0.38</td>
<td>-0.31</td>
<td>0.57</td>
<td>0.10</td>
</tr>
<tr>
<td>$\sigma(\Delta l_t)/\sigma(\Delta y_t)$</td>
<td>0.90</td>
<td>1.03</td>
<td>0.93</td>
<td>1.13</td>
<td>0.88</td>
<td>1.00</td>
</tr>
<tr>
<td>$\sigma(\Delta i_t)/\sigma(\Delta y_t)$</td>
<td>3.78</td>
<td>4.11</td>
<td>5.63</td>
<td>9.22</td>
<td>3.74</td>
<td>4.16</td>
</tr>
</tbody>
</table>

Notes: business cycle statistics in the pre-1984 sample (1948 - 1983) and post-1984 sample (1984-2018). $y_t$ is log real GDP, $l_t$ is log aggregate employment, $i_t$ is log real aggregate investment, and $\Delta$ denotes the first difference operator. “Baseline” refers to the baseline model described in the main text, which uses $\rho = -1.04$. “No Reallocation Frictions” refers to the model without reallocation frictions, i.e. $\rho = -1$. “Large Reallocation Frictions” refers to the model with $\rho = -1.5$.

This result, together with equation (17), implies that we can still write the resource constraint as in equation (33) in the proof for Proposition 2. Essentially, because investment expenditures by each sector remain Cobb-Douglas over each intermediate investment good and markets are competitive, the expenditures on each intermediate investment good remain proportional to total expenditure.

Finally, the result in Proposition 3 is also unchanged as long as the conditions for isolating the direct effect of TFP shocks on investment prices are extended to include holding fixed investment production and expenditures.

**Robustness to varying $\rho$** In our baseline results, we set the parameter $\rho = -1.04$ to match movements in the distribution of investment expenditures across sectors. Table G.1 shows that without these frictions (setting $\rho = -1$), investment is more volatile than in the baseline model, especially in the post-1984 sample. This excess volatility in turn implies higher volatility of employment by (12), so the cyclicity of labor productivity falls by nearly 0.7 and becomes countercyclical in the post-1984 sample. On the other hand, Table G.1 shows that increasing $\rho$ to $-1.5$ does not materially impact our primary findings. Taken together, these results indicate that while breaking the perfect substitutability matters for our results, the precise degree of imperfect substitutability does not.
G.2 Time Series Fit of the Model

We now show that the model provides a good fit to the observed time series of real GDP, aggregate employment, aggregate investment, and aggregate consumption. No features of these series were targeted in our calibration; instead, we simply fed in the realized series of sector-level TFP shocks and let the model endogenously produce these macroeconomic outcomes.

Figure G.1 plots the first-differenced series and Figure G.2 plots the HP-filtered ones. In both cases, the fit is impressive; the average correlation between the model’s and data’s series is $0.5 - 0.6$. Importantly, aggregate consumption comoves with the business cycle, which is a challenge in models primarily driven by shocks to investment; as we discuss in Appendix F, our model generates comovement through the intermediates network. The model fits the first-differenced series less well than the HP-filtered series in the post-1980s sample due to changes in average growth rates over time. In particular, the model predicts robust recoveries following the post-1980s recessions which did not materialize in the data because the average growth rate fell over this period. The HP filter eliminates this change in trend growth, bringing the model closer to the data.

G.3 Structural Change

Our baseline analysis focuses on how changing shock structure has changed observed business cycles by holding the parameters of the economy fixed over time. However, there have been substantial trend changes in many of these parameters over time: the decline in manufacturing, the rise of services, the rise of intellectual property products, and the decline in labor share, to name a few. While a full analysis of the impact of these structural changes on business cycle fluctuations is beyond the scope of this paper, we present two complementary exercises to show that our results are robust to accounting for structural change impacting the parameters of our model.

---

57 The weakest correlation between model and data is in employment, although this largely seems to be due to a timing difference in the model and the data; if the model time series is shifted one time period forward, the correlation between model and data is much higher.
Notes: time series of aggregate GDP, employment, investment, and consumption in the model and the data. Each series has been logged and first-differenced.
Figure G.2: Aggregate Time Series in Model and Data: HP Filter

Notes: time series of aggregate GDP, employment, investment, and consumption in the model and the data. Each series has been logged and HP filtered with smoothing parameter $\lambda = 6.25$. To avoid endpoint bias from the HP filter, we omit the first and last three years of data of the entire sample.
**Transition Path**  
Our first exercise allows for the structural parameters to change smoothly over time along a perfect foresight transition path. In particular, we assume that, starting in 1948, agents become aware of the trend path of all structural parameters of the economy over the 1948-2018 period.\(^{58}\) We further assume that these trends continue through 2043 and then gradually converge to their new steady state by 2068.\(^{59}\)

We solve for the equilibrium over this path using a variant of the solution algorithm developed in Maliar et al. (2020). This algorithm assumes that, while agents have perfect foresight over the changes in the parameters of the economy, there is still uncertainty over the realization of TFP shocks each period. We first solve for policy functions for log capital at \(T\), when parameter changes have ceased and the economy is stationary. We then iterate backwards, solving for the policy functions in \(T - 1\), taking the policy function in period \(T\) as given. We iterate over this procedure until we have policy functions for the entire sample (vom Lehns (2020) implements this algorithm in a similar way). We assume that the initial condition of the economy is the steady state corresponding to the parameter values observed in the year 1948.

We use a Smolyak grid of points to solve for the decision rules. Given the size of our state space, we limit ourselves to a first-order Smolyak grid and approximate the policy function for the log of capital as linear in the state variables. For tractability, and given that our policy functions for capital are log-linear, we assume that certainty equivalence holds and evaluate expectations with a first-order quadrature. We solve for the capital accumulation policy functions in each period and then feed in the time series of measured TFP shocks used in our baseline analysis.\(^{60}\)

---

\(^{58}\)We identify the trends in parameter values using a fourth-order polynomial, consistent with our approach to detrending TFP in Section 5. Since the consumption share, investment network, and intermediate network parameters must sum to 1, we do not compute trends for those parameters directly. Instead, we first compute trends in the levels of consumption expenditures, intermediates expenditures, and investment expenditures, and then compute expenditure shares based on those trends.

\(^{59}\)We project forward these trends conservatively, on the basis of linear trends for the moving averages of parameters for the last 5, 10, 15, or 20 years of data, selecting which yields the smallest trend growth in absolute value. We do this to minimize the likelihood of extreme trends following the last year of observed data.

\(^{60}\)We set the parameter governing the investment production frictions to \(\rho = -1.3\) because the changes in parameter values increase the volatility of investment. Our approximated decision rules imply negative investment in 1% of observations, which is inconsistent with our investment production frictions. In these cases, we set investment to 10% of the depreciated capital stock in that period; our results are robust to varying this boundary value.
Table G.2
ALLOWING FOR STRUCTURAL CHANGE VIA TRANSITION PATH

<table>
<thead>
<tr>
<th></th>
<th>Baseline Model</th>
<th>Structural Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma(\Delta y_t)$</td>
<td>3.95%</td>
<td>2.42%</td>
</tr>
<tr>
<td>$\rho(\Delta y_t - \Delta l_t, \Delta y_t)$</td>
<td>0.52</td>
<td>-0.01</td>
</tr>
<tr>
<td>$\sigma(\Delta l_t)/\sigma(\Delta y_t)$</td>
<td>0.90</td>
<td>1.03</td>
</tr>
<tr>
<td>$\sigma(\Delta i_t)/\sigma(\Delta y_t)$</td>
<td>3.78</td>
<td>4.11</td>
</tr>
</tbody>
</table>

Notes: business cycle statistics in the pre-1984 sample (1948 - 1983) and post-1984 sample (1984-2018). $y_t$ is log real GDP, $l_t$ is log aggregate employment, $i_t$ is log real aggregate investment, and $\Delta$ denotes the first difference operator. “Baseline” corresponds to the model described in the main text. “Structural change” corresponds to the results from the transition path exercise. “No shocks” corresponds to the results from the transition path exercise where there are no shocks and all fluctuations are due to the trend changes in model parameters.

Table G.2 shows that our main results continue to hold along this transition path: the cyclicality of labor productivity falls by 0.45 (compared to 0.53 in the baseline) and the relative volatility of employment rises by 0.13 (the same as in the baseline). The main difference from our baseline result is that the relative volatility of investment is higher than in the baseline analysis, reflecting the fact that our forward-looking agents change their investment decisions in response to changes in the path of structural parameters (as well as the simple fact that nonlinearities in the solution method increase volatility as well).

Simulation Exercises While the previous exercise allowed for smooth changes in structural parameters over time, it relied on strong assumptions regarding how firms adjust to these parameter changes, including an unrealistic degree of foresight on the part of agents. Our second exercise sidesteps these issues by simply simulating the model separately for parameterizations corresponding to the pre- and post-1984 period. In particular, instead of feeding in the realized time series of sectoral TFP shocks as in the main text, we estimate the covariance matrix of these shocks separately for the pre vs. post 1984 subsamples and compute population moments from those two estimates. The main challenge with this exercise is that we cannot estimate a full-rank covariance matrix with 37 sectors and less than 37 years of data both pre- and post-1984 subsamples. Therefore, following the same procedure described for the principal components analysis in Appendix D, we collapse our data to 30
## Table G.3
Allowing for Structural Change via Simulation

<table>
<thead>
<tr>
<th></th>
<th>Baseline Model</th>
<th>Simulation</th>
<th>Structural Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma(\Delta y_t)$</td>
<td>3.95%</td>
<td>2.42%</td>
<td>3.63%</td>
</tr>
<tr>
<td>$\rho(\Delta y_t - \Delta l_t, \Delta y_t)$</td>
<td>0.52</td>
<td>-0.01</td>
<td>0.76</td>
</tr>
<tr>
<td>$\sigma(\Delta l_t)/\sigma(\Delta y_t)$</td>
<td>0.90</td>
<td>1.03</td>
<td>0.83</td>
</tr>
<tr>
<td>$\sigma(\Delta i_t)/\sigma(\Delta y_t)$</td>
<td>3.78</td>
<td>4.11</td>
<td>3.54</td>
</tr>
</tbody>
</table>

Notes: business cycle statistics in the pre-1984 sample (1948 - 1983) and post-1984 sample (1984-2018). $y_t$ is log real GDP, $l_t$ is log aggregate employment, $i_t$ is log real aggregate investment, and $\Delta$ denotes the first difference operator. “Baseline” corresponds to the model described in the main text with 37 sectors. “Simulation” corresponds to the simulation exercises based on estimated covariance matrices for 30 sectors. “Structural change” corresponds to the simulation exercises, where model parameters are estimated separately for the pre-1984 and post-1984 period.

sectors by aggregating all non-durable manufacturing sectors into a single sector. We then estimate the covariance matrix of innovations to TFP separately for each subsample and simulate the model for 10,000 periods for each subsample, discarding the first 100 periods in each case. The middle panel of Table G.3 shows that, if we hold all the structural parameters fixed over time, this simulation approach generates similar changes in aggregate business cycle patterns to feeding in the realized series as in the main text.

The right panel of Table G.3 allows for the following structural parameters to differ in the pre- and post-1984 simulations: the investment network ($\lambda_{ij}$), the intermediates network ($\gamma_{ij}$), depreciation rates ($\delta_j$), capital shares ($\alpha_j$), the share of primary inputs in production ($\theta_j$), the persistence of TFP shocks ($\rho_j$), and the consumption shares ($\xi_j$). We compute the average value of these parameters separately for the pre vs. post 1984 subsamples and compute simulated moments given the covariance matrix of shocks estimated as above. The right panel of Table G.3 shows that our key outcomes of interest do not change very much relative to the simulation benchmark when we allow for these changes. The main exceptions are that the model no longer generates an increase in the volatility of investment over time and implies a somewhat larger decline in the volatility of GDP.
G.4 Non-Cobb Douglas Production and Preferences

While our baseline analysis imposed Cobb-Douglas production and utility functions for analytical tractability, we now show numerically that our results are robust to allowing for constant elasticity of substitution (CES) functional forms. Specifically, we generalize the production function to become

\[ Q_{jt} = \left[ \theta_j^{\sigma_y} Y_{jt}^{\sigma_y} + (1 - \theta_j) M_{jt}^{\sigma_y} \right]^{\sigma_y / (\sigma_y - 1)} \]  

(41)

where

\[ Y_{jt} = A_j \left[ \alpha_j^{\frac{1}{\sigma_y}} Y_k^{\frac{1}{\sigma_y}} + (1 - \alpha_j)^{\frac{1}{\sigma_y}} L_{jt}^{\frac{1}{\sigma_y}} \right]^{\sigma_k / (\sigma_k - 1)} \]  

(42)

and

\[ M_{jt} = \left( \sum_{i=1}^N \gamma_{ij}^{\frac{1}{\sigma_m}} \left( M_{jt}^{\sigma_m} \right)^{\sigma_m / (\sigma_m - 1)} \right)^{\sigma_m / (\sigma_m - 1)} \]  

(43)

We assume that productivity shocks affect the primary inputs because, as shown in Sato (1976), there would otherwise not exist a unique function for real value added. Therefore, in these exercises, we feed in productivity measured as value added net of primary inputs (rather than measured as gross output net of all inputs as in the main text).

We also generalize the consumption aggregate which enters utility to be:

\[ C_t = \left( \sum_{j=1}^N \xi_j^{\frac{1}{\sigma_c}} C_{jt}^{\sigma_c - 1} \right)^{\sigma_c / (\sigma_c - 1)} \]  

(44)

We choose values for the elasticities of substitution from Oberfield and Raval (2020) and Atalay (2017). We set the elasticity of substitution between consumption goods to \( \sigma_c = 0.75 \), which is on the low end of the range of values considered in Oberfield and Raval (2020) (0.75-1.15). We set the elasticity between intermediate inputs to Atalay (2017)’s preferred value \( \sigma_m = 0.1 \). We set the elasticity between primary inputs and intermediates to the midpoint of the range of estimates in Oberfield and Raval (2020) (0.6-1), i.e., \( \sigma_y = 0.8 \). Finally, we set the

---

61We choose the low end of this range because Oberfield and Raval (2020) looks at finely disaggregated manufacturing industries, which have greater similarity, and thus potentially a higher degree of substitutability, than the 37 sectors we consider covering the entire private non-farm economy.
### Table G.4
Allowing for Non-Cobb-Douglas Functional Forms

<table>
<thead>
<tr>
<th></th>
<th>CD</th>
<th>All CES</th>
<th>σc only</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ(Δyt)</td>
<td>3.89% 2.79%</td>
<td>4.31% 2.94%</td>
<td>3.87% 2.79%</td>
</tr>
<tr>
<td>ρ(Δyt - Δlt, Δyt)</td>
<td>0.52 -0.15</td>
<td>0.30 -0.38</td>
<td>0.54 -0.14</td>
</tr>
<tr>
<td>σ(Δlt)/σ(Δyt)</td>
<td>0.90 1.05</td>
<td>0.96 1.08</td>
<td>0.89 1.04</td>
</tr>
<tr>
<td>σ(Δit)/σ(Δyt)</td>
<td>3.78 4.09</td>
<td>3.73 4.17</td>
<td>3.79 4.11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>σk only</th>
<th>σy only</th>
<th>σm only</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ(Δyt)</td>
<td>4.43% 2.98%</td>
<td>3.85% 2.76%</td>
<td>3.86% 2.79%</td>
</tr>
<tr>
<td>ρ(Δyt - Δlt, Δyt)</td>
<td>0.24 -0.35</td>
<td>0.50 -0.20</td>
<td>0.55 -0.12</td>
</tr>
<tr>
<td>σ(Δlt)/σ(Δyt)</td>
<td>0.97 1.08</td>
<td>0.90 1.06</td>
<td>0.89 1.04</td>
</tr>
<tr>
<td>σ(Δit)/σ(Δyt)</td>
<td>3.71 4.01</td>
<td>3.81 4.13</td>
<td>3.77 4.14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>CD (2nd order)</th>
<th>All CES (2nd order)</th>
<th>Ident Inv., CES, 2nd</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ(Δyt)</td>
<td>3.87% 2.74%</td>
<td>4.38% 3.07%</td>
<td>3.71% 2.23%</td>
</tr>
<tr>
<td>ρ(Δyt - Δlt, Δyt)</td>
<td>0.52 -0.11</td>
<td>0.29 -0.43</td>
<td>0.57 0.45</td>
</tr>
<tr>
<td>σ(Δlt)/σ(Δyt)</td>
<td>0.89 1.04</td>
<td>0.96 1.10</td>
<td>0.92 0.92</td>
</tr>
<tr>
<td>σ(Δit)/σ(Δyt)</td>
<td>3.98 4.45</td>
<td>3.98 4.52</td>
<td>2.78 2.76</td>
</tr>
</tbody>
</table>

Notes: Business cycle statistics in the pre-1984 sample (1948 - 1983) and post-1984 sample (1984-2018). yt is log real GDP, lt is log aggregate employment, it is log real aggregate investment, and Δ denotes the first difference operator. “CD” corresponds to the baseline model, but instead measuring productivity shocks as value added net of primary inputs rather than gross output net of all inputs. “All CES” corresponds to the model with all functional forms (as described in the text) allowed to be CES. “σc only” corresponds to only having a CES nest in consumption aggregation. “σk only” corresponds to only having a CES nest in capital and labor. “σy only” corresponds to only having a CES nest between value added and intermediates. “σm only” corresponds to only having a CES nest in intermediate bundling. “CD (2nd order)” corresponds to solving the model using a 2nd order approximation when using value added based measures of TFP. “All CES (2nd order)” corresponds to solving the model with a second order approximation with all functional forms are CES, as described in the text. “Ident Inv., CES, 2nd” corresponds to solving the model with a second order approximation with all functional forms are CES and where the investment network is set to the identity matrix.

Given these parameter values, we then re-calibrate the share parameters in the production function in order to match the expenditure shares in the model’s steady state to the data.

Table G.4 reports a number of results using these alternative functional forms. First, for the sake of comparability, the top left panel shows the results from our baseline Cobb-Douglas model, with productivity shocks measured as value added net of primary inputs rather than gross output net of all inputs. “All CES” refers to the model with all functional forms (as described in the text) allowed to be CES. “σc only” corresponds to only having a CES nest in consumption aggregation. “σk only” refers to only having a CES nest in capital and labor. “σy only” refers to only having a CES nest between value added and intermediates. “σm only” refers to only having a CES nest in intermediate bundling. “CD (2nd order)” refers to solving the model using a 2nd order approximation when using value added based measures of TFP. “All CES (2nd order)” refers to solving the model with a second order approximation with all functional forms are CES, as described in the text. “Ident Inv., CES, 2nd” refers to solving the model with a second order approximation with all functional forms are CES and where the investment network is set to the identity matrix.

62 We have also tried using Karabarbounis and Neiman (2014)’s estimate σk = 1.25 and found that this higher elasticity does not substantially impact our results (available upon request).
model are very similar when we measure productivity as value added net of primary inputs (which we must do in the CES case given \((42)\)).\(^{63}\) Second, the top middle panel shows that allowing for the CES production and utility functions barely affect the changes in business cycle statistics over time; for example, the cyclicality of labor productivity declines by 0.64 with CES functional forms compared to 0.61 with Cobb-Douglas. However, the overall level of employment and GDP volatility is higher with the CES functional forms, consistent with the idea that complementarity amplifies overall volatility.

The next four panels of Table G.4 decompose the role of each elasticity of substitution in isolation, and show that the higher volatility of the CES model is driven by the complementarity between capital and labor. This finding indicates that, in the CES model, investment fluctuations have a large impact on labor demand, which mirrors our main result in the Cobb-Douglas model that they have a large impact on labor supply.

Finally, the bottom panels of Table G.4 investigate the role of nonlinearities by computing a second-order approximation of the model.\(^{64}\) Baqae and Farhi (2019) show how a second-order approximation allows the model to capture rich substitution patterns which exist with CES production functions. However, we find that these nonlinearities do not have a large effect on the changes in aggregate fluctuations on which we focus in this paper. In fact, with an identity investment network, there is almost no change in aggregate fluctuations, as was the case in the first-order Cobb-Douglas specification of the main text.

G.5 Other Robustness Checks

Adding Other Frictions We now show that our results are robust to allowing for frictions to reallocating labor across sectors and to accumulating capital within sectors. The labor reallocation frictions we consider modify the disutility of labor to become

\[
\left(\sum_j L_{jt}^{r+1}\right)^{\frac{1}{r+1}}
\]

(as in Horvath (2000)), which implies that workers are imperfect substitutes across sectors.

\(^{63}\)Of course, the two notions of productivity are theoretically isomorphic under Cobb-Douglas production: \(\bar{A}_{jt} = A_{jt}^{+}\) where \(\bar{A}_{jt}\) is TFP measured as value added net of primary inputs and \(A_{jt}\) is measured as gross output net of all inputs. However, this relationship may not hold in the data if production is not Cobb-Douglas or there is measurement error.

\(^{64}\)We need to specify the covariance matrix of TFP shocks in order to solve for the decision rules because certainty equivalence does not hold in a second-order approximation. We use the sample covariance matrix for our measured innovations to TFP for the entire period 1948-2018.
Table G.5
Robustness with Respect to Other Frictions

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>Labor Reallocation</th>
<th>Convex AC only</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma(\Delta y_t)$</td>
<td>3.95%  2.42%</td>
<td>3.63%  2.21%</td>
<td>3.75%  2.27%</td>
</tr>
<tr>
<td>$\rho(\Delta y_t - \Delta l_t, \Delta y_t)$</td>
<td>0.52 -0.01</td>
<td>0.71  0.33</td>
<td>0.70  0.36</td>
</tr>
<tr>
<td>$\sigma(\Delta l_t)/\sigma(\Delta y_t)$</td>
<td>0.90  1.03</td>
<td>0.83  0.95</td>
<td>0.83  0.94</td>
</tr>
<tr>
<td>$\sigma(\Delta i_t)/\sigma(\Delta y_t)$</td>
<td>3.78  4.11</td>
<td>3.49  3.81</td>
<td>3.56  3.88</td>
</tr>
</tbody>
</table>

All Capital Frictions

<table>
<thead>
<tr>
<th></th>
<th>Pre-1984  Post-1984</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma(\Delta y_t)$</td>
<td>3.59%  2.19%</td>
</tr>
<tr>
<td>$\rho(\Delta y_t - \Delta l_t, \Delta y_t)$</td>
<td>0.72  0.40</td>
</tr>
<tr>
<td>$\sigma(\Delta l_t)/\sigma(\Delta y_t)$</td>
<td>0.81  0.93</td>
</tr>
<tr>
<td>$\sigma(\Delta i_t)/\sigma(\Delta y_t)$</td>
<td>3.54  3.90</td>
</tr>
</tbody>
</table>

Notes: business cycle statistics in the pre-1984 sample (1948 - 1983) and post-1984 sample (1984-2018). $y_t$ is log real GDP, $l_t$ is log aggregate employment, $i_t$ is log real aggregate investment, and $\Delta$ denotes the first difference operator. “Baseline” refers to the baseline model described in the main text. “Labor reallocation” refers to adding labor reallocation frictions from Horvath (2000). “Convex AC only” refers to adding only quadratic capital adjustment costs without investment production frictions (i.e. setting $\rho = -1$). “All Capital Frictions” corresponds to including both investment production frictions and convex adjustment costs.

We set the value of $\tau = 4.5$ to match the volatility of employment relative to GDP in the pre-1984 period. The capital adjustment costs modify the capital accumulation equation in each sector to take the following form:

$$K_{jt+1} = (1 - \delta_j)K_{jt} + I_{jt} - \frac{\phi}{2} \left( \frac{I_{jt}}{K_{jt}} - \delta_j \right)^2 K_{jt}$$

(45)

We calibrate the size of adjustment costs $\phi$ to match the volatility of investment within sectors using a decomposition for aggregate investment variance like the one for employment in Equation (19), in a model without investment production frictions (i.e. $\rho = -1$). This generates a value of $\phi = 0.5$. We also consider results where we use this value for the adjustment costs and include investment production frictions with $\rho = -1.04$.

Table G.5 shows that including these frictions does not significantly impact our main findings. While both of sets of frictions decrease the relative volatility of employment – and therefore increase the overall cyclicality of labor productivity – the cyclicality still falls over
Table G.6

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sigma(\Delta y_t))</td>
<td>3.95%</td>
<td>2.42%</td>
<td>3.51%</td>
<td>2.10%</td>
</tr>
<tr>
<td>(\rho(\Delta y_t - \Delta l_t, \Delta y_t))</td>
<td>0.52</td>
<td>-0.01</td>
<td>0.70</td>
<td>0.33</td>
</tr>
<tr>
<td>(\sigma(\Delta l_t)/\sigma(\Delta y_t))</td>
<td>0.90</td>
<td>1.03</td>
<td>0.82</td>
<td>0.95</td>
</tr>
<tr>
<td>(\sigma(\Delta i_t)/\sigma(\Delta y_t))</td>
<td>3.78</td>
<td>4.11</td>
<td>4.02</td>
<td>4.38</td>
</tr>
</tbody>
</table>

Notes: business cycle statistics in the pre-1984 sample (1948 - 1983) and post-1984 sample (1984-2018). \(y_t\) is log real GDP, \(l_t\) is log aggregate employment, \(i_t\) is log real aggregate investment, and \(\Delta\) denotes the first difference operator. “Baseline” refers to the baseline model described in the main text, which uses \(\rho = -1.04\). “12.5% maintenance” adjusts the investment network to allow for an additional 12.5% of investment expenditures to be purchased from within each sector.

As discussed in footnotes 4 and 7, some previous studies using the 1997 BEA capital flows table were forced to make a correction to the investment network in order to ensure the model is invertible. A motivation for this correction is to account for “maintenance investment” that may be a large part of investment activity but which is not accounted for in the BEA data (see McGrattan and Schmitz Jr (1999)). However, a key challenge in adjusting for maintenance is that the mix of sectors which produce this maintenance investment is not observable in the data. One extreme assumption is that maintenance is produced by the same mix of sectors as the new investment recorded in our investment network; in this case, the investment network would not change. The opposite extreme assumption is that all maintenance investment is produced using own-sector output. We follow Foerster, Sarte and Watson (2011) and assume that 50% of maintenance investment is produced proportionally to the investment network process and 50% is produced using own-sector resources. Given that McGrattan and Schmitz Jr (1999) identify maintenance expenditures to be, on average, 30% as big as new investment in national accounts (and thus roughly 20-25% of a combination of all new and maintenance investment), we account for maintenance investment by adding a correction to the diagonal amounting to 12.5% of total investment. Table G.6 shows

\[^{65}\text{In numerical simulations we have done, it appears a key reason this correction may be necessary is because TFP shocks are assumed to follow a random walk.}\]
Table G.7

**ROBUSTNESS WITH RESPECT TO OTHER LEVELS OF DETRENDSING**

<table>
<thead>
<tr>
<th></th>
<th>Baseline (4th order)</th>
<th>2nd order trend</th>
<th>5th order trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma(\Delta y_t)$</td>
<td>3.95%</td>
<td>2.42%</td>
<td>3.75%</td>
</tr>
<tr>
<td>$\rho(\Delta y_t - \Delta l_t, \Delta y_t)$</td>
<td>0.52</td>
<td>-0.01</td>
<td>0.66</td>
</tr>
<tr>
<td>$\sigma(\Delta l_t)/\sigma(\Delta y_t)$</td>
<td>0.90</td>
<td>1.03</td>
<td>0.85</td>
</tr>
<tr>
<td>$\sigma(\Delta i_t)/\sigma(\Delta y_t)$</td>
<td>3.78</td>
<td>4.11</td>
<td>3.65</td>
</tr>
</tbody>
</table>

Notes: business cycle statistics in the pre-1984 sample (1948 - 1983) and post-1984 sample (1984-2018). $y_t$ is log real GDP, $l_t$ is log aggregate employment, $i_t$ is log real aggregate investment, and $\Delta$ denotes the first difference operator. Different columns present results for different degrees of the polynomial trend that we take out of measured TFP before feeding it into the model. “Baseline (4th order)” refers to the baseline model described in the main text, detrends using a fourth-order polynomial. “2nd order trend” refers to using a quadratic trend and “5th order trend” refers to using a 5th order polynomial.

that with this adjustment to the investment network our results continue to hold. The fact that each sector now uses its own output for investment somewhat weakens the strength of the investment hubs, but quantitatively, the model still generates a sizable decrease in the correlation of labor productivity and aggregate GDP.

**Detrending**

As discussed in the main text, we detrend measured TFP using a log-polynomial trend before feeding it into our model. Table G.7 shows that our main results are robust to using a second-order or fifth-order polynomial trend, rather than a fourth-order one as in the main text.\(^{66}\)

# H Changes in Aggregate Cycles Driven by Changes in Sectoral Comovement

This Appendix contains additional results referenced in Section 6 in the main text.

\(^{66}\)Our results are very similar when using a third-order trend as well; we omit those results for parsimony.
H.1 Proof of Footnote 28

We first show that the decline in the cyclicality of aggregate labor productivity is entirely accounted for, in a statistical sense, by the increase in the volatility of employment relative to the volatility of output (as shown in equation Footnote 28 in the main text). Of course, the definition of the correlation between labor productivity and output is $\text{Corr}(\Delta y_t, \Delta y_t - \Delta l_t) = \frac{\text{Cov}(\Delta y_t, \Delta y_t - \Delta l_t)}{\sigma(\Delta y_t)\sigma(\Delta y_t - \Delta l_t)}$ where $y_t$ denotes logged GDP and $l_t$ is logged aggregate employment (the proof also holds for logged and HP filtered data). Using the linear properties of covariance and rearranging, we can write this as:

$$\frac{\sigma(y_t)}{\sigma(\Delta y_t - \Delta l_t)} - \frac{\sigma(\Delta l_t)}{\sigma(\Delta y_t - \Delta l_t)} \text{Corr}(\Delta y_t, \Delta l_t) = \frac{\text{Cov}(\Delta y_t, \Delta y_t)}{\sigma(\Delta y_t)\sigma(\Delta y_t - \Delta l_t)} - \frac{\text{Cov}(\Delta y_t, \Delta l_t)}{\sigma(\Delta y_t)\sigma(\Delta y_t - \Delta l_t)} = \frac{\sigma(\Delta y_t)}{\sigma(\Delta y_t - \Delta l_t)} - \frac{\sigma(\Delta l_t)}{\sigma(\Delta y_t - \Delta l_t)} \text{Corr}(\Delta y_t, \Delta l_t).$$

We can write $\sigma(\Delta y_t - \Delta l_t)$ as:

$$\sigma(\Delta y_t - \Delta l_t) = \sqrt{\sigma(\Delta y_t)^2 + \sigma(\Delta l_t)^2 - 2\text{Cov}(\Delta y_t, \Delta l_t)} = \sigma(\Delta y_t)\sqrt{1 + \left(\frac{\sigma(\Delta l_t)}{\sigma(\Delta y_t)}\right)^2 - 2\left(\frac{\sigma(\Delta l_t)}{\sigma(\Delta y_t)}\right) \text{Corr}(\Delta y_t, \Delta l_t)}.$$

Combining this expression with the previous one yields:

$$\frac{\sigma(y_t)}{\sigma(\Delta y_t - \Delta l_t)} \left(1 - \frac{\sigma(\Delta l_t)}{\sigma(\Delta y_t)} \text{Corr}(\Delta y_t, \Delta l_t)\right) = \frac{1 - \frac{\sigma(\Delta l_t)}{\sigma(\Delta y_t)} \text{Corr}(\Delta y_t, \Delta l_t)}{\sqrt{1 + \frac{\sigma(\Delta l_t)^2}{\sigma(\Delta y_t)^2} - 2\frac{\sigma(\Delta l_t)}{\sigma(\Delta y_t)} \text{Corr}(\Delta y_t, \Delta l_t)}}$$

which is expression (18) in the main text. This expression makes clear that the correlation of labor productivity with GDP depends only on two statistics: the correlation between output and employment ($\text{Corr}(\Delta y_t, \Delta l_t)$) and the relative standard deviation of employment and GDP ($\frac{\sigma(\Delta l_t)}{\sigma(\Delta y_t)}$).

Table H.1 shows that the correlation of employment and GDP is stable over time; therefore, the rising volatility of employment relative to GDP accounts for the entire decline in the cyclicality of labor productivity. Intuitively, since GDP and employment are so highly correlated, the time series behavior of their ratio just depends on which component is more
Table H.1

COMPONENTS OF AGGREGATE LABOR PRODUCTIVITY CYCLICALITY

<table>
<thead>
<tr>
<th></th>
<th>Pre-1984</th>
<th>Post-1984</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Corr}(\Delta y_t, \Delta l_t))</td>
<td>0.56</td>
<td>0.28</td>
</tr>
<tr>
<td>(\text{Corr}(\Delta y_t, \Delta l_t)) only</td>
<td>0.56</td>
<td>0.56</td>
</tr>
<tr>
<td>(\sigma(\Delta l_t)/\sigma(\Delta y_t))</td>
<td>0.83</td>
<td>1.01</td>
</tr>
<tr>
<td>(\sigma(\Delta l_t)/\sigma(\Delta y_t)) only</td>
<td>0.56</td>
<td>0.30</td>
</tr>
</tbody>
</table>

Notes: decomposition of the cyclicality of labor productivity in the pre-1984 sample (1948 - 1983) and post-1984 sample (1984-2018). \(y_t\) is log aggregate value added, \(l_t\) is log aggregate employment, and \(\Delta\) is the first-difference operator. “\(\text{Corr}(\Delta y_t, \Delta l_t)\) only” computes the cyclicality of labor productivity from (18) using the actual value of \(\text{Corr}(\Delta y_t, \Delta l_t)\) in each subsample but holding fixed \(\sigma(\Delta l_t)/\sigma(\Delta y_t)\) at its value in the pre-1984 subsample. “\(\sigma(\Delta l_t)/\sigma(\Delta y_t)\) only” computes labor productivity from (18) using the actual value of \(\sigma(\Delta l_t)/\sigma(\Delta y_t)\) in each subsample but holding fixed \(\text{Corr}(\Delta y_t, \Delta l_t)\) at its value in the pre-1984 subsample.

volatile.

H.2 Robustness of business cycle moments

We now show that the aggregated and within sector business cycle moments from Table 8 are robust to various choices in the statistical methodology. Table H.2 show that those results, in both the model and the data, continue to hold using the HP filter rather than first differences to detrend the data. Table H.3 shows that the average value of the within sector statistics is similar when using fixed weights or no weights, compared to using time-varying weights (as in the main text).

H.3 Derivation of Decomposition (19)

To derive the decomposition presented in equation (19), we start by decomposing the variance of aggregate employment into within-sector variances and between-sector covariances. We take a first-order Taylor approximation of aggregate employment growth, which yields

\[
\Delta l_t \approx \sum_{j=1}^{N} \omega_{jt} \Delta l_{jt}
\]
### Table H.2
**Changes in Business Cycles, HP Filter**

<table>
<thead>
<tr>
<th></th>
<th><strong>Aggregated</strong></th>
<th><strong>Within-Sector</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sigma(y_t))</td>
<td>2.03%</td>
<td>1.24%</td>
</tr>
<tr>
<td>(\rho(y_t - l_t, y_t))</td>
<td>0.52</td>
<td>0.14</td>
</tr>
<tr>
<td>(\sigma(l_t)/\sigma(y_t))</td>
<td>0.85</td>
<td>1.09</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th><strong>Aggregated</strong></th>
<th><strong>Within-Sector</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sigma(y_t))</td>
<td>2.52%</td>
<td>1.80%</td>
</tr>
<tr>
<td>(\rho(y_t - l_t, y_t))</td>
<td>0.53</td>
<td>0.01</td>
</tr>
<tr>
<td>(\sigma(l_t)/\sigma(y_t))</td>
<td>0.92</td>
<td>1.01</td>
</tr>
</tbody>
</table>

Notes: Business cycle statistics in the pre-1984 sample (1948 - 1983) and post-1984 sample (1984-2018). \(y_t\) is log value added and \(l_t\) is log employment. “Aggregated” aggregates value added across sectors using a Tornqvist index weighted by nominal value added shares, aggregates employment as the simple sum, HP-filters both series with smoothing parameter \(\lambda = 6.25\), and computes the statistics. “Within-sector” HP-filters each sector-level series with smoothing parameter \(\lambda = 6.25\), computes the statistics, and then averages them weighted by the average share of nominal value added within that sub-sample. To avoid endpoint bias from the HP filter, we omit the first and last three years of data of the entire sample in computing these figures.

### Table H.3
**Within-Sector Business Cycle Statistics with Different Weights**

<table>
<thead>
<tr>
<th></th>
<th><strong>Time-Varying (Baseline)</strong></th>
<th><strong>Fixed Weights</strong></th>
<th><strong>Unweighted</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sigma(\Delta y_t))</td>
<td>5.42%</td>
<td>4.29%</td>
<td>4.98%</td>
</tr>
<tr>
<td>(\rho(\Delta y_t - \Delta l_t, \Delta y_t))</td>
<td>0.69</td>
<td>0.67</td>
<td>0.68</td>
</tr>
<tr>
<td>(\sigma(\Delta l_t)/\sigma(\Delta y_t))</td>
<td>0.76</td>
<td>0.81</td>
<td>0.78</td>
</tr>
</tbody>
</table>

Notes: Business cycle statistics in the pre-1984 sample (1948 - 1983) and post-1984 sample (1984-2018). \(y_t\) is log value added, \(l_t\) is log employment, and \(i_t\) is log investment. “Baseline” first-differences each variable, computes the statistics, and then averages them weighted by the average share of nominal value added within that sub-sample. In “Fixed Weights,” we use each sector’s value added share averaged for the entire sample window to weight sectoral moments both pre- and post-1984. In “Unweighted,” we construct moments as the simple mean across all sectors.
where $\omega_{jt}^l$ is the average share of sectoral employment in the aggregate for the time period studied, $l_t$ is log aggregate employment, and $l_{jt}$ is log sector-level employment. The approximation reflects the facts that the log of the sum is not equal to the sum of the logs and that the shares $\omega_{jt}^l$ are not constant over time. Given this linear expression for aggregate employment, standard rules of variance and covariance imply the following decomposition of aggregate employment variance:

$$\text{Var}(\Delta l_t) \approx \sum_{j=1}^N (\omega_{jt}^l)^2 \text{Var}(\Delta l_{jt}) + \sum_{j=1}^N \sum_{o \neq j} \omega_{jt}^l \omega_{ot}^l \text{Cov}(\Delta l_{jt}, \Delta l_{ot})$$

We perform a similar decomposition for aggregate GDP, and then we consider the ratio of these two decompositions.\(^{67} \) This ratio is given by:

$$\frac{\text{Var}(\Delta l_t)}{\text{Var}(\Delta y_t)} \approx \frac{\sum_{j=1}^N (\omega_{jt}^y)^2 \text{Var}(\Delta y_{jt})}{\text{Var}(\Delta y_t)} + \frac{\sum_{j=1}^N \sum_{o \neq j} \omega_{jt}^y \omega_{ot}^y \text{Cov}(\Delta y_{jt}, \Delta y_{ot})}{\text{Var}(\Delta y_t)}$$

This expression can be rewritten as:

$$\frac{\text{Var}(\Delta l_t)}{\text{Var}(\Delta y_t)} \approx \frac{\sum_{j=1}^N (\omega_{jt}^y)^2 \text{Var}(\Delta y_{jt})}{\text{Var}(\Delta y_t)} \frac{\sum_{j=1}^N (\omega_{jt}^l)^2 \text{Var}(\Delta l_{jt})}{\text{Var}(\Delta y_t)} + \frac{\sum_{j=1}^N \sum_{o \neq j} \omega_{jt}^y \omega_{ot}^y \text{Cov}(\Delta y_{jt}, \Delta y_{ot})}{\text{Var}(\Delta y_t)} \frac{\sum_{j=1}^N \sum_{o \neq j} \omega_{jt}^l \omega_{ot}^l \text{Cov}(\Delta l_{jt}, \Delta l_{ot})}{\text{Var}(\Delta y_t)}$$

And then, defining the “variance weight” as $\omega_t = \sum_{j=1}^N (\omega_{jt}^y)^2 \text{Var}(\Delta y_{jt}) / \text{Var}(\Delta y_t)$, we obtain the final relationship (19) in the main text.

**H.4 Additional Quantitative Results**

**Accuracy of the Decomposition** Table H.4 shows that the approximate decomposition (19) is accurate in our data. In particular, the relative variance and the standard deviation

\(^{67} \)Since aggregate GDP is obtained via a Tornqvist index, log changes in GDP are already given as a weighted sum of log changes in sectoral value added. Thus, the approximation only reflects the fact that the weights are not constant over time.
### Table H.4
#### Accuracy of the Decomposition

<table>
<thead>
<tr>
<th></th>
<th>Pre-84</th>
<th>Post-84</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual, variance</td>
<td>0.68</td>
<td>1.02</td>
</tr>
<tr>
<td>Approximation, variance</td>
<td>0.68</td>
<td>1.04</td>
</tr>
<tr>
<td>Actual, standard deviation</td>
<td>0.83</td>
<td>1.01</td>
</tr>
<tr>
<td>Approximation, standard deviation</td>
<td>0.83</td>
<td>1.02</td>
</tr>
</tbody>
</table>

Notes: variance and standard deviation of real GDP to aggregate employment. “Actual” refers to the actual values of those statistics in the aggregate data. “Approximation” refers to the right-hand side of the decomposition (19).

### Table H.5
#### Average Pairwise Correlations, Model vs. Data

<table>
<thead>
<tr>
<th></th>
<th>Data</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Employment</td>
<td>Value added</td>
</tr>
<tr>
<td>Pre-1984</td>
<td>0.50</td>
<td>0.29</td>
</tr>
<tr>
<td>Post-1984</td>
<td>0.49</td>
<td>0.17</td>
</tr>
<tr>
<td>Difference</td>
<td>-0.01</td>
<td>-0.12</td>
</tr>
</tbody>
</table>

Notes: average pairwise correlations $\rho_{x\tau}$ in (46). “Pre-1984” computes $\rho_{x\tau}$ in the 1948-1983 subsample and “post-1984” computes $\rho_{x\tau}$ in the 1984-2017 subsample. “Data” refers to the data and “Model” to the model.

of employment implied by the decomposition are close to their actual values in the data.

**Changes in Comovement Patterns** In the main text, we asserted that the comovement of value added across sectors fell in the post-1980s data but the comovement of employment did not. We now support this assertion by computing the change in the average correlation of value added and employment growth across pairs of sectors:

$$
\rho^x_{\tau} \equiv \frac{\sum_{i=1}^{N} \sum_{j=i+1}^{N} \omega_i^x \omega_j^x \text{Corr}(\Delta x_{jt}, \Delta x_{jt} | t \in \tau)}{\sum_{i=1}^{N} \sum_{j=i+1}^{N} \omega_i^x \omega_j^x} 
$$

(46)

where $x_{jt}$ is either employment or value added and $\omega_j$ are value added or employment shares.

Table H.5 shows that the correlation of value added falls nearly in half, generating most of the decline in the covariances in the decomposition (19); in contrast, the correlation of employment is essentially stable, generating the stability of the between sector covariances.
Figure H.1: Scatterplot of Changes in Sector-Pair Covariances

Notes: This figure plots changes in the covariance for each pair of sectors $(j, o)$ in our dataset. The horizontal axis computes the change in the covariance of value added $\text{Cov}(y_{jt}, y_{ot})$ in the post-1984 sample (1984-2018) relative to the pre-1984 sample (1948-1983). Each point is weighted by the product of the two sector-pair’s average nominal value added share over the whole sample. The blue solid line is the OLS regression line. Employment and value added are in log first differences.

68 To our knowledge, our model is the only explanation for the declining cyclicality of aggregate labor productivity that is consistent with these facts in the data.

**Sector Pair Covariance Changes** In the main text, we asserted that the changes in covariance patterns are broad-based and not driven by outliers. We illustrate these patterns in Figure H.1, which provides a scatter plot of the change in employment and value added covariances for each sector pair. The covariance of value added declines for most pairs of sectors in the data. Further, while there is substantial heterogeneity in changes in the covariance of employment, these changes are generally of a smaller magnitude than the changes in value added covariance. The figure also shows that these patterns are not driven by outliers but are occurring across many sector pairs.

68 The fact that the correlation of employment across sectors is higher in our model than the data is driven by our choice of an infinite Frisch elasticity $\eta \to \infty$; this assumption implies that the marginal disutility of labor supply is constant, so an increase in one sector’s employment does not affect the incentives to supply labor to other sectors. With a finite Frisch elasticity $\eta < \infty$, an increase in one sector’s employment increases the disutility of supply labor to other sectors, decreasing the level of employment comovement. However, allowing for a finite Frisch still implies that the correlation of employment across sectors is constant over time (details available upon request).
Figure H.2: Model Fit of Sector-Pair Level $\Delta \text{Cov}(l_{jt}, l_{ot}) - \Delta \text{Cov}(y_{jt}, y_{ot})$ ($R^2 = 53\%$)

Notes: model fit to sector-pair $(j, o)$ value of $\Delta \text{Cov}(l_{jt}, l_{ot}) - \Delta \text{Cov}(y_{jt}, y_{ot})$, where $\Delta \text{Cov}(l_{jt}, l_{ot})$ is the covariance of log first differenced employment in the post-1984 sample relative to the pre-1984 sample, and $\Delta \text{Cov}(y_{jt}, y_{ot})$ is the covariance of log first differenced value added in the post-1984 sample relative to the pre-1984 sample. Horizontal axis is the value of that statistic in the data while the vertical axis is the value in the model. The solid line is the regression line across all sectors, which has an $R^2$ of 0.53. The dashed line is the 45-degree line. In the plot, circle size is proportional to the product of the pair’s share of value added over the entire sample.

Model Fit to Covariance Changes across Sector Pairs We now show that the model also matches changes in covariance patterns across individual sector pairs well. We summarize the sector-pair level change with the “diff-in-diff” $\Delta \text{Cov}(l_{jt}, l_{ot}) - \Delta \text{Cov}(y_{jt}, y_{ot})$. On average, this object is positive because employment covariances change by less than the value added covariances, and larger values correspond to a larger divergence between employment and value added covariances over time. We plot this diff-in-diff in the data and in the model in Figure H.2. Although neither of these objects were targeted in the calibration, the model explains 50% of the cross-sectional variation in the data.\(^69\)

\(^{69}\)The weighted regression line for the data and the model is slightly less steep than the 45-degree line (a regression coefficient of 0.85), indicating that the magnitude of the differences in differences is slightly larger in the model than in the data. However, even the $R^2$ of the 45-degree line remains high at $R^2 = 0.33$. 

105
### Table H.6
**Decomposition of Relative Employment Volatility, NBER-CES**

<table>
<thead>
<tr>
<th></th>
<th>Pre-84</th>
<th>Post-84</th>
<th>Contribution of entire term</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{\text{var}(l_t)}{\text{var}(y_t)})</td>
<td>0.37</td>
<td>0.57</td>
<td>100%</td>
</tr>
<tr>
<td>Variances</td>
<td>0.33</td>
<td>0.21</td>
<td>1.4%</td>
</tr>
<tr>
<td>Covariances</td>
<td>0.37</td>
<td>0.60</td>
<td>98.6%</td>
</tr>
<tr>
<td>Variance Weight</td>
<td>0.03</td>
<td>0.06</td>
<td></td>
</tr>
</tbody>
</table>

Notes: results of the decomposition (19) using NBER-CES data for 462 manufacturing sectors. “Variances” refers to the variance component \(\sum_{j=1}^{N}(\omega_{yt})^2\text{var}(y_{jt})/\sum_{j=1}^{N}(\omega_{yt})^2\text{var}(y_{jt})\). “Covariances” refers to the covariance component \(\sum_{j=1}^{N}\sum_{o\neq j}(\omega_{yt})^2\text{cov}(l_{jt},l_{ot})/\sum_{j=1}^{N}(\omega_{yt})^2\text{var}(y_{jt})\). “Variance weight” refers to the weighting term \(\omega_t = \sum_{j=1}^{N}(\omega_{yt})^2\text{var}(y_{jt})/\text{var}(y_t)\). “Contribution of entire term” computes the contribution of the first term of the decomposition (19) (in the variances row) and the contribution of the second term (in the covariances row). Real value added is constructed using the gross output price deflator.

---

**Decomposition in Finer Disaggregation of Manufacturing**  
Table H.6 shows that our results hold using a finer disaggregation of sectors within the manufacturing sector only. These data are from the NBER-CES database, which covers 462 manufacturing sectors from 1958-2011.\(^7^0\) We still observe at this finely disaggregated level that the rise in the relative variance of employment to GDP is almost exclusively due to changes in the covariance of activity across sectors.

**Equal Weights in the Decomposition**  
Since our decomposition (19) is weighted by sector size, the changes over time may be driven by changes in the distribution of weights rather than changes in comovement patterns. However, H.7 shows that this is not the case; the results are nearly identical if we use constant, equal weights over time.

**HP Filter**  
Table H.8 shows that the decomposition results are robust to using the HP filter rather than first-differences.

\(^7^0\)There are seven sectors which we omit because they report zero employment at some point in the sample frame.
**Table H.7**  
Decomposition of Relative Employment Volatility, Equal Weights

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th></th>
<th></th>
<th>Equal Weights</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pre-84</td>
<td>Post-84</td>
<td>Contribution of entire term</td>
<td>Pre-84</td>
<td>Post-84</td>
<td>Contribution of entire term</td>
</tr>
<tr>
<td>(\frac{\text{Var}(l_t)}{\text{Var}(y_t)})</td>
<td>0.68</td>
<td>1.04</td>
<td>100%</td>
<td>0.72</td>
<td>0.94</td>
<td>100%</td>
</tr>
<tr>
<td>Variances</td>
<td>0.41</td>
<td>0.48</td>
<td>15%</td>
<td>0.45</td>
<td>0.41</td>
<td>11%</td>
</tr>
<tr>
<td>Covariances</td>
<td>0.72</td>
<td>1.19</td>
<td>85%</td>
<td>0.76</td>
<td>1.06</td>
<td>89%</td>
</tr>
<tr>
<td>Variance Weight</td>
<td>0.12</td>
<td>0.21</td>
<td></td>
<td>0.12</td>
<td>0.19</td>
<td></td>
</tr>
</tbody>
</table>

\[
(\omega_t = \sum_{j=1}^{N}(\omega_{jt}^y)^2\text{Var}(\Delta y_{jt})/\text{Var}(\Delta y_t))
\]

Notes: results of the decomposition (19) in the pre-1984 sample (1948 - 1983) and post-1984 sample (1984-2018). “Baseline” refers to the decomposition from the main text. “Equal weights” sets all the weights \(\omega_{jt}^y = \omega_{jt}^l = 1\).

**Table H.8**  
Decomposition of Relative Employment Volatility, HP Filter

<table>
<thead>
<tr>
<th></th>
<th>First Differences</th>
<th></th>
<th></th>
<th>HP Filter</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pre-84</td>
<td>Post-84</td>
<td>Contribution of entire term</td>
<td>Pre-84</td>
<td>Post-84</td>
<td>Contribution of entire term</td>
</tr>
<tr>
<td>(\frac{\text{Var}(l_t)}{\text{Var}(y_t)})</td>
<td>0.68</td>
<td>1.04</td>
<td>100%</td>
<td>0.72</td>
<td>1.09</td>
<td>100%</td>
</tr>
<tr>
<td>Variances</td>
<td>0.41</td>
<td>0.48</td>
<td>15%</td>
<td>0.48</td>
<td>0.49</td>
<td>13%</td>
</tr>
<tr>
<td>Covariances</td>
<td>0.72</td>
<td>1.19</td>
<td>85%</td>
<td>0.75</td>
<td>1.25</td>
<td>87%</td>
</tr>
<tr>
<td>Variance Weight</td>
<td>0.12</td>
<td>0.21</td>
<td></td>
<td>0.11</td>
<td>0.20</td>
<td></td>
</tr>
</tbody>
</table>

\[
(\omega_t = \sum_{j=1}^{N}(\omega_{jt}^y)^2\text{Var}(\Delta y_{jt})/\text{Var}(\Delta y_t))
\]

Notes: results of the decomposition (19) in the pre-1984 sample (1948 - 1983) and post-1984 sample (1984-2017). “First differences” refers to first differencing the data as in the main text. “HP filter” refers to using HP-filtered data. To avoid endpoint bias with the HP filter, we eliminate the first and last three years of the sample.
Table I.1
Effects of 1% Investment Purchase Subsidy

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>No intermediates</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta i_t$</td>
<td>6.52%</td>
<td>5.25%</td>
</tr>
<tr>
<td>$\Delta n_t$</td>
<td>1.85%</td>
<td>1.59%</td>
</tr>
<tr>
<td>$\Delta n_t^{\text{hubs}}$</td>
<td>4.63%</td>
<td>5.06%</td>
</tr>
<tr>
<td>$\Delta n_t^{\text{non-hubs}}$</td>
<td>1.21%</td>
<td>0.48%</td>
</tr>
</tbody>
</table>

Notes: effect of a one-time $\text{sub}_t = 0.01$ shock to the stimulus policy shock described in the main text. “Baseline” refers to full model and “No intermediates” refers to model without intermediate goods (i.e. $\theta_j = 1$ for all sectors $j$). $\Delta i_t$ is the percentage change in aggregate investment, $\Delta n_t$ is the percentage change in aggregate employment, $\Delta n_t^{\text{hubs}}$ is the percentage change in employment at the investment hubs, and $\Delta n_t^{\text{non-hubs}}$ is the percentage change in employment at the non-hubs.

I Implications of Network for Stimulus Policy

The analysis in the main text focused on how the investment network propagates sector-specific productivity shocks; in this appendix, we briefly study how it propagates investment stimulus policies, such as investment tax credits or the bonus depreciation allowance. We model investment stimulus as an exogenous shock to the cost of capital:

$$(1 - \text{sub}_t) \times \nu_{jt},$$

where $\nu_{jt}$ is the marginal cost of producing investment goods and $\text{sub}_t$ is the policy shock. Winberry (2020) shows that a number of actual policies map into this reduced-form shock.\(^71\)

We assume that the policy shock is financed from outside the economy in order to focus on how it affects investment incentives.\(^72\)

Table I.1 shows that the investment stimulus increases employment in many sectors of the economy. A 1% subsidy shock increases aggregate investment by more than 6%. Most of this increased investment is produced by investment hubs, whose employment increases by about 4.6%. Employment at non-hubs also increases by about 1.2% in order to supply

---

\(^71\)The key intuition behind this result is that, without financial frictions, the present value of tax savings per unit of investment is a sufficient statistic to capture the effects of these policies on investment.

\(^72\)Of course, the equilibrium of our model is efficient. We think it nevertheless provides useful insights about the positive effects of these policies, which will be important forces in a normative exercise using richer models in which the policies may be welfare-improving.
Figure I.1: Distributional Effects of Investment Stimulus

Notes: effect of a one-time $sub_t = 0.01$ shock to the stimulus policy shock described in the main text. Each bar plots the change in employment at that particular sector, divided by the change in aggregate employment. The sum of all the bars equals 100% of the change in aggregate employment. Red bars are the investment hubs’ response in our baseline model, blue bars are the non hubs’ response in our baseline model, and transparent grey bars are the responses in a version of the model in which we eliminate the investment network by assuming all investment is done out of own-sector output.

intermediates to the investment hubs through the Leontief-adjusted investment network. The right column of Table I.1 shows that, without these linkages from the intermediates network, employment at the non-hubs increases by about half as much.\footnote{The fact that non-hubs’ employment increases even without the intermediates network reflects the fact that they also produce some investment goods.}

Figure I.1 shows that the effects of the stimulus shock on employment are unevenly distributed across sectors of the economy. Nearly half of the increase in aggregate employment is concentrated in the four investment hubs because they produce the majority of investment. There is also a sizable increase in employment in the key suppliers to investment hubs. However, the sectors which do not supply intermediates to the hubs see virtually no change in their employment.
Figure I.2: Distributional Effect of Investment Stimulus

Effect of 1% Investment Subsidy on Sector-level Employment

Notes: effect of a one-time $sub_t = 0.01$ shock to the stimulus policy shock described in the main text. Each bar plots the percentage change in employment at that particular sector. Red bars are the investment hubs’ response in our baseline model, blue bars are the non-hubs’ response in our baseline model, and transparent grey bars are the responses in a version of the model in which we eliminate the investment network by assuming all investment is done out of own-sector output.

Figure I.1 also shows that, in a counterfactual version of the model without the investment network (setting $\Lambda = I$), the effect of the policy is more uniformly distributed across sectors. Without the investment network, the service sectors (in the right of the plot) account for a larger share of the aggregate response than the non-service sectors. This result simply reflects the fact that service sectors are larger and therefore mechanically account for a larger share of employment fluctuations; Figure I.2 shows that the percentage change in employment within sectors, which is not mechanically related to size, is fairly uniformly distributed across sectors in the model without the investment network.