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Abstract
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high long-run elasticities of substitution across inputs of production, especially among workers
with different skills within a same education group. We use this framework to evaluate the ef-
fects of redistributive policies such as the minimum wage and the Earned Income Tax Credit.
We argue that since these policies generate slow transition dynamics that can differ greatly in
the short and long run, a serious assessment of their overall impact must take account of the
entire time path of the responses they induce.
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The high degree of wage inequality in the United States, coupled with growing evidence of firm

monopsony power in labor markets, has renewed interest in redistributive labor market policies

such as the minimum wage and the Earned Income Tax Credit (EITC). Although these policies

are designed to support the income of low-wage workers, they also affect the relative prices of these

workers’ labor services by making them more or less expensive to employ. Hence, the ultimate

effects of these policies on employment, income, and welfare critically depend on firms’ ability to

substitute across workers.

Our starting point is the observation that the elasticity of substitution across workers tends to be

lower in the short run than in the long run. In particular, we are motivated by two regularities based

on two different sources of variation in wages and employment. First, increases in the minimum

wage alter the relative wages of affected workers. In the short run, these wage changes tend to

produce small changes in employment, which suggests that the short-run elasticity of substitution

across workers is low (see Neumark and Shirley (2022)’s survey). Second, changes in demographic

structure or immigration flows alter the labor supply of some groups of workers relative to others.

In the long run, these changes in the relative employment of different groups of workers tend to lead

to small changes in their relative wages, which implies that the response of wages in the long run

to large changes in employment is small. Hence, this finding suggests that the long-run elasticity of

substitution across different groups of workers is large (see Card and Lemieux (2001) and Borjas

and Katz (2007)). Taken together, these observations indicate that the ability of firms to substitute

across different groups of workers is lower in the short run than in the long run.

Our goal is to develop a framework in which the elasticity of substitution across workers en-

dogenously changes over time in order to study the dynamic effects of labor market policies on

different groups of workers. We do so by building a model of the U.S. economy that incorporates

key features including heterogeneous workers, monopsonistic labor markets, and a putty-clay tech-

nology such that in the long run capital can be combined with different workers in any ratios but

these ratios are fixed once capital is installed. Given this technology, in the short run, firms do

not adjust the mix of workers employed to produce output with existing capital, even for large

changes in policies—as consistent with the evidence on the low short-run elasticity of substitution

among workers in response to changes in the minimum wage. Over time, though, firms modify

the composition of their workforce both by utilizing less of their existing capital and by investing

in new capital that is less intensive in the use of the labor services of workers who have become

more expensive to employ (workers affected by the minimum wage) or more intensive in the use
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of the labor services of workers who have become less expensive to employ (workers affected by

the EITC). This pattern of adjustment is consistent with the measured high long-run elasticity of

substitution among workers in response to changes in aggregate labor supply.

Our main result is that taking these slow transition dynamics into account is necessary to

correctly assess the full impact of labor market policies. Fundamentally, the reason is that the

slow adjustment in the mix of workers that firms employ delays the ultimate long-run effects

of labor market policies. Hence, when policies increase employment, these dynamics delay their

benefits, whereas when policies decrease employment, these dynamics delay their costs. In either

case, comparing the present value of labor income under such policies taking these dynamics into

account can lead to vastly different conclusions about their impact than either a short-run empirical

analysis, which extrapolates from a few years of observations, or a long-run theoretical analysis,

which focuses on steady-state changes, would suggest.

Given our interest in redistributive policies, we allow for rich heterogeneity in workers’ produc-

tivity so as to reproduce the observed distribution of wages in the data. In particular, we allow for

differences in worker productivity both across broad education groups—namely, between college

and non-college educated workers—and across workers within the same education group. Since em-

pirically the dispersion of wages within an education group is an order of magnitude larger than

across them and the estimates of the substitutability of labor within education groups are over four

times as large as those across groups, the key margin of substitution for the labor market policies

we study is across non-college workers with different levels of productivity.

Our putty-clay technology provides a rich model of how firms substitute across workers with

different productivity over time. Formally, in each period when making investment decisions, firms

choose between types of capital that require different mixes of worker types to be operated (putty-

clay capital). The resulting capital built in that period has vintage-specific productivity and per-

manent idiosyncratic productivity as in Gilchrist and Williams (2000). This setup gives rise to both

an endogenous rigidity in the use of multiple inputs to production, which accounts for their dif-

ferent degrees of substitutability over time, and a key margin of variable capital utilization, which

critically affects the speed of an economy’s transition to the long run after any large policy change.

Indeed, in the long run, firms can flexibly substitute across different worker mixes by investing in

different types of capital that are differentially intensive in the use of the labor services of different

workers. Once a unit of capital is in place, however, production is Leontief in its required mix of

workers. Hence, in the short run, firms can only adjust their labor demand by choosing which of
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the units of already installed capital—which differ in their input mixes, vintage productivity, and

idiosyncratic productivity—to utilize in production.

Our second contribution is to embed this production structure into a labor market environment

with matching frictions and firm monopsony power. We account for monopsony power in order

to capture the idea, dating back to Robinson (1933), that labor market policies may not only

redistribute income but also help correct inefficiencies. We incorporate this insight into a modern

dynamic search-theoretic framework of the labor market with long-term employment relationships

and empirically realistic labor market flows into and out of unemployment. Importantly, such a

framework allows us to avoid specifying ad-hoc rationing rules when policy-mandated constraints,

such as the minimum wage, become binding.1. We differ from this literature in that we augment

the standard search framework with monopsonistic competition among firms to provide a potential

welfare enhancing role of policy. Additionally, we focus on the transition dynamics induced by the

various labor market policies and this literature focuses on steady state changes.

Since the speed of an economy’s transition triggered by a policy change is fundamentally a

quantitative question, we first show how the mechanism of our model can be disciplined by readily

available data and then explore its implications for the dynamic impact of policies. We specify

a degree of firms’ monopsony power in the labor market that matches recent estimates of wage

markdowns documented by Seegmiller (2021), Lamadon, Mogstad and Setzler (2022), and Berger,

Herkenhoff and Mongey (2022), which find that, on average, workers are paid between 65% and

85% of their marginal products. We then parametrize firms’ production technology by targeting

key moments that are informative about input substitution possibilities in the short and long

run. For the short run, we ensure that the distribution of capital productivity reproduces average

capital utilization rates in the data. The resulting model implies small employment responses to

the minimum wage in the short run, thus matching our first motivating fact. For the long run, we

specify a set of possible capital types that traces out a nested constant elasticity of substitution

frontier in capital and labor of different levels of education and productive ability. We choose the

parameters of this function to match the long-run effects of changes in the relative supply of workers

with different levels of education on their relative wages as estimated by Card and Lemieux (2001),

consistent with our second motivating fact.

Using the minimum wage as our leading example, we illustrate now important it is to account for
1Our paper is related to a long line of research that has evaluated the impact of labor market policies through

the lens of frictional models of the labor market. See, in particular, Eckstein and Wolpin (1990), Flinn (2006), Ahn,
Arcidiacono and Wessels (2011), Engbom and Moser (2022), and Drechsel-Grau (2022)
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transition dynamics when evaluating labor market policies. We do so because this context provides

a particularly clean mapping between the policy under consideration and the changes in the relative

cost of different types of workers to firms. Our main result is that when technology is of the putty-

clay form, employment adjusts only slowly to changes in the minimum wage. Crucially, the direction

of this adjustment depends on the size of the change in the minimum wage being contemplated.

Specifically, when firms have monopsony power in the labor market, a small increase in the minimum

wage ultimately increases the long-run employment of workers for whom the minimum wage binds—

typically workers of low productivity—by reducing the monopsony distortions they face. In our

model, though, increasing the employment of these workers requires firms to build new types of

capital that are more intensive in the use of these workers’ services, which take time to accumulate.

By contrast, a large increase in the minimum wage ultimately decreases the long-run employ-

ment of low-productivity workers by making them too expensive to employ relative to their marginal

products. But again it takes time for firms to substitute away from these workers. In the short run,

firms do not have an incentive to dismiss employed workers because doing so would require forfeiting

the monopsony profits they still earn on high-productivity workers, given that installed (Leontief)

capital implies a high degree of complementarity across workers. Instead, firms progressively sub-

stitute away from less productive workers only by replacing them at a lower rate than the rate at

which they naturally separate—that is, by attrition that leaves some installed capital idle—while

simultaneously building new capital that is less intensive in the use of such workers’ services. Note

that if capital utilization were full, as simpler putty-clay models imply, then attrition would oc-

cur at most at the speed at which capital depreciates. Our endogenous utilization margin instead

accelerates an economy’s transition relative to these simpler models because firms choose to idle

more of their existing capital and thus to phase out workers more quickly than capital depreciates.

The slow overall adjustment in employment just described shapes how a minimum wage policy

impacts the labor income of affected workers. On impact, the minimum wage immediately raises the

wages of all workers bound by the new minimum. For a small increase in the minimum wage, these

labor income gains increase over time as firms gradually hire more of these workers. In this sense,

our putty-clay technology delays the ultimate long-run benefits of the policy. On the contrary, for

a large increase in the minimum wage, labor income gains for the lowest-productivity workers are

eroded over time as firms slowly substitute away from these workers. The employment loss is large

enough that the labor income of the lowest-productivity workers eventually falls. In this case, our

putty-clay technology delays the long-run costs of the policy.
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We use our model to illustrate the potential limitations of two strategies of policy evaluation

that are common in the literature, which abstract from the dynamic effects we focus on, by way of

two stylized examples. First, a static short-run analysis would measure in the data the effects of a

minimum wage change over the first couple of subsequent years and then presume that what occurs

during this period of time captures what occurs from then on. Second, a steady-state analysis would

instead assess the impact of labor market policies by comparing the new steady state of an economy

to the old one. We show that both the static short-run and the long-run steady-state approaches

severely misstate the labor income gains from labor market policies over time that our model

implies. For example, accounting for the full transition path following an increase in the minimum

wage to $15, we find that a worker originally earning $7.50 experiences a present value increase in

labor income of about 40%. A static calculation would predict instead that labor income increases

by 80%—which is double the true gain. By contrast, a steady state calculation would predict that

labor income decreases by 60%. Although these examples are admittedly simplified representations

of standard approaches, they illustrate our key message: when an economy’s response to a sizable

change in policy is slow, as labor market data indicate, any comprehensive assessment of the

associated benefits or costs must take the full dynamics of adjustment into account.

Despite these results being primarily illustrated in the context of the minimum wage, similar

lessons apply to the EITC. The key difference between these two policies is that under the EITC, the

government, rather than firms, pays the cost of increasing the wages of low-productivity workers.

As a result, the EITC reduces monopsony distortions without creating an incentive for firms to

substitute away from lower-productivity workers, which results in an increase in their employment

in the long run. As is the case for a small increase in the minimum wage, it takes time for firms to

increase the employment of these workers, which delays the ultimate long-run benefits of the EITC.

Hence, here too both a naive static and a purely steady-state analysis provide a poor approximation

to evaluating changes in the EITC over the full transition that an economy would experience.

Some of the insights that our paper offers are related to those in Sorkin (2015) and Aaronson

et al. (2018), who also argue that the effect of the minimum wage on employment is smaller in the

short run than in the long run. These papers propose partial equilibrium models of a small sector—

such as restaurants—with a variant of the standard putty-clay capital to study small changes in the

minimum wage that affect only that sector. Since both papers capture consumers’ behavior through

a reduced-form industry demand curve, they are silent about labor supply and consumption and

thus refrain from examining the effects of the minimum wage on workers’ behavior and welfare.
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By contrast, we study the dynamic distributional effects of labor market policies within a general

equilibrium framework that connects firms’ labor demand to individual workers’ labor supply. On

the firm side, the models in these papers feature full utilization of inputs and limited heterogeneity

among workers. We find that allowing for intensive margins of capital and labor utilization and rich

patterns of labor-labor substitution—especially within education groups—are crucial for assessing

the impact of labor market policies. Finally, we incorporate firm monopsony power so that policies

can potentially improve on allocations to shed light on any static and dynamic trade-off between

efficiency and redistribution.2 We also show that firm monopsony power has key implications for

the transition of an economy in response to changes in policies, since it affects firms’ incentives to

adjust their stock of labor and capital as the relative prices of inputs change.

1 Model
We propose a framework that allows for rich margins of an economy’s response to large-scale labor

market policies. First, we combine directed search with monopsony power to provide a novel notion

of dynamic monopsony power in an environment with long-term employment relationships. Second,

we allow for variable degrees of substitutability in production among different workers and among

workers and capital at different time horizons, connecting firms’ choices of employment of different

types of workers to firms’ decisions of how much to invest and utilize different vintages of capital.

Third, by doing so, the framework we develop gives rise to dynamic patterns of responses to policy

that are richer and more consistent with data than existing models.

Formally, our economy features a single output good used for consumption and investment over

an infinite horizon.3 Households maximize utility by choosing their consumption, labor supply, and

intensity of job search. Firms maximize profits by investing in capital, deciding how much of their

capital to use in production, and hiring workers. In this section, we describe the model without any

labor market policies. Omitted proofs and derivations are in the Online Appendix.
2Berger, Herkenhoff and Mongey (2025) study the role of the minimum wage in alleviating monopsony distortions

in a model with rich firm heterogeneity. They find that long-run efficiency gains are small because a single minimum
wage is too blunt an instrument to correct monopsony distortions across heterogeneous firms. We find a similar result
in the long run given the heterogeneity in monopsony distortions across heterogeneous workers. However, our primary
focus is on the dynamics generated by endogenous changes in the elasticity of substitution across workers. Also see
Mousavi (2022) and Berger et al. (2024) for work exploring the interaction of monopsony and taxation.

3See Aaronson and French (2007) and MaCurdy (2015) for multi-good analyses of the minimum wage that account
for differential effects of the minimum wage on the relative prices of the goods produced by different sectors. To this
end, these papers assume that different sectors employ different mixes of workers. Although such an extension of
our framework is straightforward in principle, it is challenging in practice. Any quantitative analysis would require
disciplining each sector’s production structure, including the elasticity of substitution among skill groups within each
sector, the elasticity of demand of each sector for the different skill groups, and input-output links among sectors.
Embedding this structure in a dynamic general equilibrium model is beyond the scope of this paper.
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1.1 Households

Households or families differ in their type i ∈ {1, 2, . . . , I}, which describes attributes that are

imperfectly substitutable in production. In our quantitative analysis, a type consists of a household’s

education level and labor efficiency, which allows us to match the distribution of wages within and

across education groups in U.S. data. Families of type i have measure µi, and each is composed of

a large number of members.4 Each family has preferences represented by the utility function∑∞

t=0
βtUt(cit, nit, sit) with nit =

(∑
j
n

ω+1
ω

ijt

) ω
ω+1

and sit =
∑

j
sijt,

where cit is the family’s consumption of the output good, nit is an index of the disutility of work,

sit is an index of the disutility of labor market search, and j denotes a firm. The index nit describes

how a family views jobs at different firms j as imperfect substitutes for each other, which gives rise

to firm j’s monopsony power in hiring workers as described below.5 The extent of firm monopsony

power is governed by the degree of substitutability of jobs in workers’ preferences, captured by the

parameter ω. In particular, as ω → ∞ jobs at different firms become perfect substitutes and firm

monopsony power vanishes. We make this point formally below.

In our directed search setting, at the beginning of period t, families observe the current em-

ployment offers from each firm j. A job offer for members of a family of type i can be summarized

by the tightness θijt of the sub-market of firm j’s jobs, defined as the ratio of the firm’s posted

vacancies µiaijt to the workers searching for them µisijt, and the present value of wages over the

life of the match, Wijt+1, as detailed below. Given these offers, each type-i family chooses the

measure of family members sijt searching for jobs at each firm j. A family member searching in

t for a job at firm j finds that job with probability λw(θijt), begins working in t + 1, is paid the

wage wijt+τ = (1 + g)τwijt+1 in each period τ ≥ 1 of employment, and exogenously separates with

probability σ at the end of each period, where g is the growth rate of the economy and the stream of

wage payments {wijt+τ} has present value Wijt+1. A type i-family’s problem is to choose sequences

of consumption, {cit}, measures of family members searching for jobs at each firm j, {sijt}, and
4This formulation implies perfect consumption risk sharing within each type-i family, as in Merz (1995) and

Andolfatto (1996), but still allows for imperfect risk sharing across families of different types.
5See Berger, Herkenhoff and Mongey (2022) and Deb et al. (2024) for related preferences and discussions of their

microfoundation. This specification can be thought as arising from a family’s idiosyncratic valuation of work at a
particular firm due to, say, locations or other non-wage amenities.
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measures of family members employed at each such firm, {nijt}, to solve

max
cit,sijt,nijt+1

∑∞

t=0
βtUt(cit, nit, sit) (1)

s.t. nijt+1 = (1− σ)nijt + λw(θijt)sijt

s.t.
∑∞

t=0
Q0,tcit = ζiP+ Ii +

∑∞

t=0
Q0,t

∑
j
λw(θijt)sijtWijt+1,

where the first constraint is the employment transition law in which σ is the exogenous separation

rate and λw(θijt)sijt is the measure of searching members that find jobs. The second constraint is

the period 0 budget constraint where Q0,t denotes the price of a claim to output in period t in units

of output in period 0, ζiP is the family’s share of the present value of firm profits P, and Ii is the

present value of wages promised to family members initially employed in period 0.

The family’s labor supply decisions are summarized by the first-order condition for the measure

of a family’s members searching for jobs at firm j in period t, given by

−Usit

Ucit
= λw(θijt)Qt,t+1(Wijt+1 + Vijt+1) if sijt > 0,

where Ucit and Usit denotes the derivative of Ut(·) with respect to cit and sit. The left side of this

equation is the marginal disutility of searching for jobs in period-t consumption units, which is

equated across all firms j for which workers search. The right side, which is the marginal benefit

of searching for jobs, reflects that a worker finds a job at firm j with probability λw(θijt), begins

working in the next period, and receives the present value of wage payments Wijt+1 net of the

present value of the disutility of working at firm j, Vijt+1, both discounted by Qt,t+1. Here and

throughout we use the notation Qt,s = Q0,s/Q0,t for the price of the output good in period s

in units of the output good in period t. The present value of the disutility of work at firm j is

recursively defined as

Vijt+1 =
Unit+1

Ucit+1

(
nijt+1

nit+1

) 1
ω

+Qt+1,t+2(1− σ)Vijt+2. (2)

If workers search for jobs at firm j in period t, then the value of doing so must be at least as

large as the value of searching for jobs at any other firm j′ in that λwQt,t+1(θijt)(Wijt+1+Vijt+1) ≥

Wit ≡ maxj′{λw(θij′t)Qt,t+1(Wij′t+1+Vij′t+1)}. In a symmetric equilibrium in which all firms other

than firm j offer workers the common value λw(θit)Qt,t+1(Wit+1+Vit+1), this inequality reduces to

λw(θijt)Qt,t+1(Wijt+1 + Vijt+1) ≥ Wit = λw(θit)Qt,t+1(Wit+1 + Vit+1), (3)

where Wit is the market value of an offer. We refer to (3) as the participation constraint because

firms understand that any job offer they make must satisfy this condition for them to be able to
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attract workers. As we formalize below, this constraint is our model’s version of the firm-specific

labor supply curve that arises in static models of firm monopsony power—see Robinson (1933) for

an early reference—since imposing this constraint implies that each firm views itself as facing an

upward-sloping supply curve of workers for its jobs. The supply curve is dynamic in our framework

because both workers’ job search decisions and firms’ hiring decisions are intertemporal due to

search frictions. In particular, forming an employment relationship entails incurring costs now—

time for workers and resources for firms—for the prospect of future benefits—wages for workers

and profits for firms. As we will show, firms’ monopsony power affects not only the wages that

firms pay to workers but also the number of job vacancies firms post or, equivalently, these workers’

probabilities of finding a job. It turns out that the impact of firms’ monopsony power on both

of these margins leads to distinct sources of inefficiencies in the labor market: both wages and

vacancies are lower than in the corresponding competitive equilibrium.

1.2 Firms

We develop a production structure in which short-run and long-run elasticities of substitution differ

not only between capital and labor but also across different types of labor. To this end, we extend

the putty-clay setup of Gilchrist and Williams (2000) with endogenous capital utilization to an

environment with heterogeneous workers, search frictions, and firm monopsony power.6

Production Technology. A large but finite number of identical firms indexed by j = 1, . . . , J

operate installed capital whose productivity differs along two dimensions. First, all units of capital

produced in t have the same permanent vintage productivity At. Vintage productivity grows at a

constant rate gA chosen so that its evolution, At+1 = (1+ gA)At, generates an aggregate economic

growth rate of g. This productivity growth leads to natural obsolescence of older vintages of capital,

since the older the vintage the less productive is capital relative to the newest vintage. This force

leads firms to progressively shut down older, less productive capital before shutting down newer,

more productive capital. In period t, we index a firm’s history of past installed capital vintages by

their date of installation t − τ ; along a balanced growth path, we equivalently index them by the

number of periods since they have been installed, τ ≥ 0.

Second, within each vintage of capital, any new unit of capital is subject to a permanent

idiosyncratic productivity shock ε. Specifically, if a firm installs K units of capital, referred to as

machines, then a measure π(ε)K of these machines has idiosyncratic productivity ε. Here π(ε) is the
6A major point of Gilchrist and Williams’s (2000) paper, whose technology we adopt, is that their version of the

putty-clay model captures well business-cycle dynamics. Indeed, the authors argue that in many dimensions, their
putty-clay setup actually fits the data better than the standard putty-putty setup.
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p.d.f. of ε with mean 1 and Π(ε) is the corresponding c.d.f. One interpretation of these idiosyncratic

productivity differences among new units of capital is that machines are often standardized and,

as a result, can be more or less adequate for their particular use at a firm after they are installed.

We show that these differences generate an active margin of variable capital utilization within

each capital vintage, because firms have an incentive to shut down machines with lower ε within

a vintage. The total productivity of a type (At−τ , ε) unit of capital is At−τε. We first describe the

familiar putty-putty version of this production structure and then move to the putty-clay version.

Putty-Putty Production. Here, if firm j combines Kjt(At−τ , ε) units of type (At−τ , ε) capital with

N1jt(At−τ , ε), . . . , NIjt(At−τ , ε) units of each type of labor, then the firm produces

At−τε× F (Kjt(At−τ , ε), N1jt(At−τ , ε), . . . , NIjt(At−τ , ε)) (4)

units of output in period t, where F (K,N1, . . . , NI) is a constant returns-to-scale production func-

tion. We assume that F (K,N1, . . . , NI) = KαG(N1, . . . , NI)
1−α, where G(N1, . . . , NI) is also a

constant returns-to-scale function.7 In our quantitative work, we specify G(N1, . . . , NI) to be

a constant elasticity of substitution (CES) function for consistency with the empirical litera-

ture on the elasticity of substitution among different groups of workers in production. Since the

production function F features constant returns to scale, we can write it in intensive form as

F (K,N1, . . . , NI) = K × F (1, N1/K, . . . , NI/K) ≡ K × f(v), where v = (v1, . . . , vI) is the vector

of labor-to-capital ratios or labor intensities vi = Ni/K and f(v) = F (1, v). We can then express

the output produced using Kjt(At−τ , ε) units of type (At−τ , ε) capital in (4) as

At−τε×Kjt(At−τ , ε)× f (v1jt(At−τ , ε), . . . , vNjt(At−τ , ε)) .

With putty-clay production, considered next, production at the firm level has a similar expression

but with a Leontief production function.

Putty-Clay Production. In our putty-clay model, firms choose the labor intensity of capital of any

vintage—when capital is putty—but cannot adjust it once capital is installed—when capital hardens

to clay. This setup provides a parsimonious way to allow short-run elasticities of substitution across

all inputs to differ from long-run ones. For example, a firm may invest in either a machine that

needs to be operated by many low-skilled workers and few high-skilled ones or a machine that needs

few low-skilled workers and many high-skilled ones. After this decision is made, the skill mix of
7This Cobb-Douglas form between capital and the labor aggregate is required to achieve balanced growth with

vintage capital productivity growth. It is also broadly consistent with estimates of the elasticity of substitution
between capital and labor in the literature. For instance, Oberfield and Raval (2021) suggests values for α between
0.5 and 0.7, whereas Karabarbounis and Neiman (2014) estimates a value of 1.25.
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Figure 1: Illustration of Short-Run vs. Long-Run Isoquants

Notes: Short-run and long-run isoquants of putty-clay model with no capital heteorgeneity At−τ = ε = 1 and
one type of labor G(N) = N . Long-run isoquant corresponds to F (K,N) = 1. Short-run isoquants correspond to
Leontief production functions for different labor intensities v = N/K.

workers needed to operate the machine is fixed over the life of the machine. Following Gilchrist and

Williams (2000), we assume that the labor intensity of capital is chosen before capital is installed

and the idiosyncratic productivity ε is realized. This timing assumption leads to an active shutdown

margin for firms. From now on, we index a unit of capital by (v,At−τ , ε), where v is the fixed vector

of labor intensities vi = Ni/K. Specifically, if a firm combines Kjt(v,At−τ , ε) units of capital with

N1(v,At−τ , ε), . . . , NI(v,Aτ−τ , ε) units of each type of labor, it produces output equal to

Yjt(v,At−τ , ε) = At−τε×min

{
Kjt(v,At−τ , ε),

N1jt(v,At−τ , ε)

v1
, . . . ,

NIjt(v,At−τ , ε)

vI

}
× f(v). (5)

The min operator captures the Leontief nature of production once capital is installed. The maximum

output that a firm can obtain from this set of machines is when it assigns to them Nijt(v,At−τ , ε) =

viKjt(v,At−τ , ε) units of each type of labor for all i—namely, in exactly the required proportion. We

refer to viK as the labor requirement of type-i workers for a machine of type v. If the firm allocates

too much labor of type i to the machine in that Nijt(v,At−τ , ε) > viKjt(v,At−τ , ε) , then the excess

labor of type i assigned to the machine, Nijt(v,At−τ , ε)−viKjt(v,At−τ , ε), remains idle. Likewise, if

the firm allocates too little labor of type i to the machine in that Nijt(v,At−τ , ε) < viKjt(v,At−τ , ε),

then some of the capital K(v,At−τ , ε), namely viKjt(v,At−τ , ε)−Nijt(v,At−τ , ε), remains idle, that

is, the firm shuts down some of that type of capital. If a firm has a total amount Nijt of workers of

type i, then the allocation of type i-workers across machines, namely Nijt(v,At−τ , ε) for a machine

of type (v,At−τ , ε), must satisfy the adding-up constraint∑
τ

∫
v,ε
Nijt(v,At−τ , ε)π(ε)dvdε ≤ Nijt. (6)

The long-run elasticity of substitution across inputs is governed by the intensive-form production
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function f(v). To see how, Figure 1 plots isoquants of the short- and long-run production functions

with At−τ = ε = 1 and one type of labor, G(N) = N . The long-run isoquant is generated by the

putty-putty production function F (K,N) = KαN1−α, with intensive form f(v) = (N/K)1−α. A

firm with a putty-clay production function can choose ex ante among different types of capital with

labor intensities v = N/K along a long-run isoquant. However, once capital is installed, its labor

intensity v is fixed and the firm’s only choice is how much of it to utilize, that is, where on the

corresponding ray to the origin the firm chooses to locate itself.

Over time, though, firms can choose different points along the long-run isoquant by accumulating

different types of capital. In this sense, the long-run substitution possibilities are determined by

the putty-putty technology f(v). With multiple types of workers, so that, say, F (K,N1, N2) =

KαG(N1, N2), likewise a firm over time can gradually substitute across workers by installing new

machines that embody new labor-to-capital ratios. For example, when the minimum wage increases,

firms can substitute away from low-productivity workers towards higher-productivity ones and/or

capital. The speed of the economy’s adjustment to labor market policies depends on how much of

the existing capital is utilized and the rate at which new capital requiring different input mixes is

installed.

To be able to characterize the firm’s problem using standard first-order conditions, we express

output in terms of capital utilization rates and replace the min-representation with inequality

constraints on these rates. Specifically, we write the output of each machine of type (v,At−τ , ε) in

terms of the worker-to-capital ratios Nijt(v,At−τ , ε)/Kjt(v,At−τ , ε) so that

Yjt(v,At−τ , ε) = At−τεKjt(v,At−τ , ε)min

{
1,

1

v1
· N1jt(v,At−τ , ε)

Kjt(v,At−τ , ε)
, . . . ,

1

vI
·
NIjt(v,At−τ , ε)

Kjt(v,At−τ , ε)

}
f(v),

and then define the utilization rate ujt(v,At−τ , ε) for each machine as

ujt(v,At−τ , ε) = min

{
1,

1

v1
· N1jt(v,At−τ , ε)

Kjt(v,At−τ , ε)
, . . . ,

1

vI
·
NIjt(v,At−τ , ε)

Kjt(v,At−τ , ε)

}
. (7)

This utilization rate is less than 1 if a firm assigns fewer workers than required of any type to

operate the machine at full capacity, namely, Nijt(v,At−τ , ε) < viKjt(v,At−τ , ε) for any type i.

A firm chooses the utilization rate of each machine subject to three constraints:

ujt(v,At−τ , ε)≥0, ujt(v,At−τ , ε)≤1, and ujt(v,At−τ , ε)≤Nijt(v,At−τ , ε)/(viKjt(v,At−τ , ε)). (8)

The first constraint, ujt(v,At−τ , ε) ≥ 0, captures the non-negativity constraint on Nijt(v,At−τ , ε),

as inputs cannot be negative. We capture the constraints imposed by the min operator in (5) with

the two constraints ujt(v,At−τ , ε) ≤ 1, since capital cannot be utilized beyond its capacity, and
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ujt(v,At−τ , ε) ≤ Nijt(v,At−τ , ε)/(viKjt(v,At−τ , ε)). We can then rewrite (7) as

Yjt(v,At−τ , ε) = At−τε× ujt(v,At−τ , ε)×Kjt(v,At−τ )f(v), (9)

and append the constraints on capital utilization just described to the firm problem.

Investment. Each period t, firms choose how much new capital Xjt(v) of vintage t to install for

each labor intensity v. Since capital depreciates at rate δ, the amount of type (v,At, ε)-type capital

left in period t+ τ is (1− δ)τπ(ε)Xjt(v,At). A key assumption is that investment is irreversible in

that Xjt(v) ≥ 0. Otherwise, firms could replicate the putty-putty model by converting the existing

capital back into output and then investing this output into the optimal type of putty-clay capital.

Hiring. Firms hire workers in a monopsonistically competitive labor market with directed search

with a constant returns to scale matching functionm(µia, µis). In period t, firm j creates a measure

of vacancies µiaijt at cost κit each and posts offers of the form (θijt,Wijt+1) to attract each type-i

workers, where market tightness θijt = (
µiaijt
µisijt

) determines the probability λw(θijt) that a worker

searching in this market finds firm j and the probability λf (θijt) that firm j meets a worker. Firms

are able to attract workers whenever their offers satisfy the participation constraint in (3)—we

maintain that firms treat symmetrically individual families of the same type. The measure {Nijt}

of workers of type-i employed by firm j evolves according to the transition law

Nijt+1 = (1− σ)Nijt + λf (θijt)µiaijt. (10)

We take the number of firms J to be finite, so that each firm hires a measure of workers, but large

enough that they act as monopsonistic competitors; see Burdett and Judd (1983).

Firm Problem. Let Yjt =
∑

τ

∫
v,ε Yjt(v,At−τ , ε)π(ε)dvdε with Yjt(v,At−τ , ε) as in (9). Taking

as given the sequence of intertemporal prices, {Q0t}, and the market value of offers, {Wit}, each

firm j chooses sequences of investments in each capital type v, {Xjt(v)}, allocations of type-i

workers across installed capital, {Nijt(v,At−τ , ε)} for each machine of type (v,At−τ , ε), measures

of vacancies to post for each type-i worker, {µiaijt}, job offers for each such type, {θijt,Wijt+1},

and total workers of type i, {Nijt}, understanding that Nijt = µinijt, to maximize

P =
∑∞

t=0
Q0,t

[
Yjt −

∫
v
Xjt(v)dv −

∑I

i=1
κitµiaijt −

∑I

i=1
λf (θijt)µiaijtQt,t+1Wijt+1

]
, (11)

the present value of profits. Constraints to this problem are the participation constraints (3) for

all i and t, the adding up constraints (6) for all i and t, the utilization constraints (8) for all t, the

transition laws for labor (10) for all i and t, the investment irreversibility constraints Xjt(v)≥0 for

all t, and the nonnegative vacancy constraints µiaijt ≥ 0 for all i and t.
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Equilibrium. We focus on symmetric equilibria in which all firms make the same capital, labor,

utilization, vacancy creation, and employment decisions. A symmetric monopsonistically competitive

search equilibrium consists of i) allocations for each type i of households, namely, sequences of con-

sumption, {cit}, measures of family members searching for jobs at each firm j, {sijt}, and measures

of family members employed at each such firm {nijt}; ii) allocations for firms, namely, sequences

of investments in each capital type v, {Xjt(v)}, associated capital stocks {Kjt+τ+1(v,At, ε)}, allo-

cations of each worker type i to each machine type (v,At−τ , ε), {Nijt(v,At−τ , ε)}, utilization rates

for each machine type (v,At−τ , ε), {ujt(v,At−τ , ε)}, measures of vacancies to post for each worker

type i, {µiaijt}, employment offers, {θijt,Wijt}, and the total measure of employed workers of each

type {Nijt}; iii) intertemporal prices Q0,t for consumption goods such that at these allocations, a)

each household i’s allocation solves (1); b) each firm j’s allocation solves (11); c) at each date t, the

job-finding and job-filling rates are consistent with the matching function; d) total employment at

each firm of employed workers of each type, {Nijt}, satisfies the adding-up constraint (6) and the

transition law (10); e) labor demand equals labor supply for each type i of worker, Nijt = µinijt,

at each date t; and f ) the output market clears,∑
i
µicit +

∑
i,j
κitµiaijt +

∑
j

∫
v
Xjt(v)dv =

∑
j,τ
Yjt.

We use the balanced growth path, BGP, of this economy to build intuition. On that path,

consumption, investment, output, wages, and the disutility of both working and searching grow

along with the economy at rate 1 + g and searching, employment, vacancies, and intertemporal

prices, Qt,t+1 stay constant. Finally, since the capital stock grows but labor stays constant the

labor to capital ratios shrink over them.

2 Equilibrium Characterization
We now characterize equilibrium. We mainly focus on the firm problem as it determines the key

margins affecting the economy’s response to market-wide labor policies. First, endogenous capital

utilization governs short-run labor demand, given the distribution of installed capital. Second,

investment in new types of capital generates an increasing degree of substitutability across workers

over time. Together with firms’ dynamic monopsony power, these features of our framework give

rise to dynamic patterns of responses to policy that are richer and more consistent with the data

than those implied by existing models.
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2.1 The Allocation of Labor to Capital: Capital Utilization

We can decompose a firm’s dynamic profit maximization problem into a static component, governing

the allocations of employed workers to existing capital, and a dynamic component, governing the

hiring of workers and the accumulation of new capital. We now turn to the first one.

Utilization Problem. A firm’s key margin of adjustment in the short run is how much to utilize

each type of installed capital by choosing how many workers to assign to each unit. The utilization

decision is part of the solution to the dynamic problem in (11). But taking as given the multiplier

χ̂ijt, from this dynamic problem on the constraint (6) on the uses of labor, we show that the

utilization rate for each machine solves a static problem given the firm’s existing capital stock of

previous vintages {Kjt(v,At−τ )}∞τ=1. The static utilization problem is

max
{ujt(v,At−τ ,ε)}∞τ=1

∑
τ

∫
v,ε
At−τε× ujt(v,At−τ , ε)×Kjt(v,At−τ )π(ε)dvdε

+
∑

i
χ̂ijt

[
Nijt −

∑
τ

∫
v,ε
Nijt(v,At−τ , ε)π(ε)dvdε

]
(12)

s.t. 0 ≤ ujt(v,At−τ , ε) ≤ 1 and ujt(v,At−τ , ε)viKjt(v,At−τ , ε) ≤ Nijt(v,At−τ , ε).

We refer to this problem as a pseudo-Lagrangian problem because the multipliers χ̂ijt are taken from

a different problem, namely the dynamic problem in (11). These multipliers capture the shadow

value of an additional marginal measure of type-i workers available for production only in period

t. Note that this shadow value is also the opportunity cost of not assigning workers to their best

alternative use in operating machines. At an optimal allocation, this opportunity cost equals the

marginal product of labor assigned to the marginal operating machine. Therefore, we refer to it

either as the marginal product or the shadow cost of labor. In the absence of search frictions, this

shadow cost would simply equal the flow wage χ̂ijt = wijt.

Proposition 1. The optimal utilization rates for the static pseudo-Lagrangian problem in (12) are

also the optimal utilization rates for the dynamic problem in (11). Both are given by a cutoff rule

such that firms fully utilize capital of type (v,At−τ , ε) with idiosyncratic productivity ε above the

threshold ε(v,At−τ , χ̂jt) =
∑

i χ̂ijtvi/ [At−τf(v)] and do not utilize capital with ε below it.

To prove this proposition, we first show that optimal capital utilization follows a cutoff rule. To

see why, note that the first-order condition for utilization ujt(v,At−τ , ε) in (11) is given by

At−τεf(v)Kjt(v,At−τ )π(ε)−
∑

i
λijt(v,At−τ , ε)viKjt(v,At−τ ) = λUijt(v,At−τ , ε)− λLijt(v,At−τ , ε),

where λLijt(v,At−τ , ε), λ
U
ijt(v,At−τ , ε), and λijt(v,At−τ , ε) are the multipliers on three utilization
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constraints in (8), respectively. Substituting the first-order condition for labor assignment Nijt in

problem (11), namely, λijt(v,At−τ , ε) = χ̂ijtπ(ε) where χ̂ijt is the multiplier on the adding-up

constraint (6), into the first-order condition for utilization and dividing by Kjt(v,At−τ )π(ε) yields

At−τεf(v)−
∑

i
χ̂ijtvi =

[
λUijt(v,At−τ , ε)− λLijt(v,At−τ , ε)

]
/ [Kjt(v,At−τ )π(ε)] . (13)

Now, if At−τεf(v)−
∑

i χ̂ijtvi > 0 or, equivalently, ε > ε ≡
∑

i χ̂ijtvi/[At−τf(v)], then (13) implies

that λUijt(v,At−τ , ε) − λLijt(v,At−τ , ε) > 0 and so ujt(v,At−τ , ε) = 1 by complementary slackness.

If At−τεf(v)−
∑

i χ̂ijtvi < 0 or, equivalently, ε < ε ≡
∑

i χ̂ijtvi[At−τf(v)], then λUijt(v,At−τ , ε) −

λLijt(v,At−τ , ε) < 0 by (13), which yields that ujt(v,At−τ , ε) = 0 by complementary slackness. So,

the utilization decision has the form: fully utilize if ε > ε and do not utilize at all if ε < ε.8 Note

that this solution depends on time only through the multipliers χ̂ijt and the productivity At−τ .

Next, we show that the solution to the static problem (12) for utilization coincides with that of

the dynamic problem. To do so, we note that if we follow the same steps for this static problem as

we did with the dynamic problem, we find that that the cutoff rule of Proposition 1 is the solution

to this static problem—with the given χ̂ijt as well. This concludes the proof.

To understand this cutoff rule, suppose that the π(ε) machines using capital Kjt(v,At−τ ) with

productivity Aε are not being fully utilized, so that ujt(v,At−τ , ε) < 1. Increasing their utilization

by ∆ would require an increase in each of the labor types assigned to them by π(ε)∆Nijt =

π(ε)viK∆. Doing so would tighten the adding-up constraint on all I types of labor at a shadow cost

of
∑

i χ̂ijtviπ(ε)∆. This shadow cost captures that using more of each type of labor on an existing

non-fully utilized machine prevents other machines from being utilized at a higher rate. The cutoff

rule for utilization prescribes that such machines should be fully utilized only if the increase in

output from doing so, namely, At−τεf(v)Kjt(v,At−τ )π(ε)∆, is at least large as the shadow cost of

the resources required to so so, namely
∑

i χ̂ijtviKjt(v,At−τ )∆. In Proposition 1, we emphasized

that the multiplier in the static problem came from the dynamic problem, hence we wrote it as

χ̂ijt. From now on, though, we let χijt denote the multiplier from the dynamic problem.

The quantitative importance of this utilization rate margin is determined by the mass of existing

capital near its operating threshold. Following Gilchrist and Williams (2000), we assume that

log ε ∼ N(−σ2ε/2, σ2ε) so that the distribution of idiosyncratic capital productivity is parameterized

by its dispersion σε. In our quantitative exercise we choose σε to match the average capital utilization

rate in the data, implicitly relying on the log-normal form of the distribution of ε to determine

changes in capital utilization in response to the policies we examine.
8In the knife-edge case where At−τεf(v)−

∑
i χijtvi = 0, the firm is indifferent over any ujt(v,At−τ , ε) ∈ [0, 1].
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Figure 2: Illustrating the Capital Utilization Margin Along the BGP
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Notes: Distribution of capital productivity At−τε along the BGP. Colored lines plot mass of capital of different
vintages. Dashed vertical line is the operating threshold At−τεt−τ ; all capital to the right of it is utilized.

Intuition from the Balanced Growth Path. To understand the determinants of firms’ uti-

lization decisions, consider our model’s balanced growth path. As we show, on this path firms invest

in a unique type of capital each period, with labor intensity vt = Nijt(v,At−τ , ε)/Kjt(v,At−τ , ε)

that shrinks at rate g, since Kjt(v,At−τ , ε) grows at rate g and Nijt(v,At−τ , ε) stays constant. By

Proposition 1, a unit of capital of vintage t−τ is operated in period t if and only if its overall produc-

tivity At−τεt−τ is greater than the cutoff level At−τεt−τ =
∑I

i=1 χ̃iṽi/f(ṽ), where ṽi = ṽi(1 + g)t is

the detrended type-i labor requirement of the capital and χ̃i = χ̃it/(1+g)
t is the detrended shadow

cost of type-i labor. Since At−τ = (1+ gA)
−τAt and A0 is normalized to 1, the operating threshold

for a unit of capital from vintage t − τ in t is εt−τ = (1 + g)τ
∑I

i=1 χ̃iṽi/f(ṽ). This idiosyncratic

productivity cutoff grows as the vintage ages because the shadow cost of labor grows at rate g but

the vintage productivity At−τ remains fixed. Therefore, a shrinking set of these machines—those

with idiosyncratic productivity ε ≥ εt−τ—are profitable to operate.

Figure 2 shows that both vintage productivity growth g and the dispersion of idiosyncratic

capital productivity σε play an important role in shaping capital utilization. Each panel plots the

distribution of capital according to its overall productivity At−τε. In this space, the threshold

At−τεt−τ is constant across vintages, but average overall productivity is lower for older vintages.

All capital with productivity to the right of this operating threshold, denoted with a vertical

dashed line, is utilized. As a baseline, the left panel of Figure 2 plots the distribution of capital

productivity in a version of the model without vintage growth (g = 0) and without dispersion in

capital productivity (σε = 0). In this case, the distribution of capital productivity is degenerate.

Moreover, the distribution lies strictly above the utilization threshold, and thus all capital is fully

utilized as in Atkeson and Kehoe (1999). This result occurs because the variable shadow profit
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from operating capital, At−τεf(ṽ)−
∑

i χ̃iṽi, is strictly positive due to firms having to recover the

cost of producing capital and having monopsony power in the labor market. Hence, a small enough

increase in the shadow cost of labor does not induce firms to shut down capital.

The middle panel of Figure 2 introduces capital heterogeneity across vintages (with g = 2% as in

our calibrated model) but abstracts from heterogeneity within vintages (σε = 0). The productivity

of a given vintage of capital now declines relative to the frontier so that old enough vintages cross

the operating threshold and are completely shut down. In this case, an increase in the shadow

cost of labor induces firms to shut down some of the older vintages of capital near the threshold.

However, the mass of such older vintages is fairly small because most of the old capital has already

depreciated away at rate δ by the time this threshold is reached.

The right panel of Figure 2 allows for heterogeneity both across vintages (g = 2%) and within

vintages (σε > 0 as in our calibrated model). As before, the average productivity of newer vintages is

higher than that of older vintages. However, due to the significant dispersion in productivity within

vintages, each vintage has a positive mass of capital that is shut down. Indeed, every vintage has

marginal machines that are shut down for even a small increase in the shadow cost of labor.

2.2 Dynamic Labor and Capital Allocation

We now turn to characterizing the dynamic decisions about how capital and labor evolve over time.

Firm Labor Market Decisions. We start with a description of workers’ search and firms’ hiring

decisions. Our key contribution in this dimension is to show that our framework with monopsonisti-

cally competitive search yields a tractable model of firm dynamic monopsony power with long-term

employment relationships. These features lead to novel interactions between a firm’s hiring decisions

across periods that are absent from existing models, which consider either one-period employment

relationships and firm monopsony power (Berger, Herkenhoff and Mongey (2022)) or long-term

employment relationships in a competitive setting (Kehoe et al. (2023)). The resulting monopsony

distortions open the door for labor market policies to improve the efficiency of the equilibrium.

To understand our model’s dynamic monopsony power, consider the sequence of participation

constraints in (3) that a firm in period 0 confronts when making labor market decisions given by (3)

for any t. These constraints are different from the analogous ones that arise in competitive search

models due to the imperfect substitutability of jobs in workers’ preferences. Specifically, the key

term in the present value of the disutility of work at firm j, Vijt, defined in (2) that is specific to our

imperfectly substitutable case is (nijt+1/nit+1)
1
ω , which arises from dnit+1/dnijt+1. When workers

view jobs as imperfectly substitutable, firms take account that hiring workers of a family of type
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i in any period s affects the utility of the future family members hired in any subsequent period.

Intuitively, if firm j hires additional λw(θijt)sijt∆ workers in period s ≤ t, then (1−σ)t−s∆ of them

are still working at the firm in period t. Through this term, the presence of these members of a

family of type i hired in s affects the utility of all future members of this family hired in any period

t ≥ s.9 By contrast, in the perfectly competitive search case (ω = ∞), the term dnit+1/dnijt+1

equals 1 and the participation constraints of workers hired in any period are disconnected from

those hired in any other period (so ∂Vijt+τ+1/∂nijt+1 ̸= 0 for all τ ≥ 0).

Source of Dynamic Monopsony. The intertemporal linkage across the participation constraints in

(3) for workers hired in different periods makes the analysis of firm monopsony power much richer

than in the typical static monopsony model. To keep track of these dynamic interactions, we collect

the terms of the participation constraints in each period t that are common across periods (as in

Marcet and Marimon (2019)) to isolate the impact of additional hires of a type-i family by firm j

in t on the disutility of work of all family’s members hired by the firm in future periods. Let then

Q0,t+1µiγijt+1 be the (scaled) multiplier on the time-t participation constraint of the firm problem

in (11). After grouping terms, the contribution of these constraints to the Lagrangian is

∑∞

t=0
Q0,t+1µiMijt+1

Unit+1

Ucit+1

(
nijt+1

nit+1

) 1
ω

+
∑∞

t=0
Q0,t+1µiγijt+1

[
Wijt+1 −

Wit

Qt,t+1λw(θijt)

]
, (14)

where Mijt is an auxiliary variable with transition law Mijt+1 = (1− σ)Mijt + γijt+1 summarizing

a firm’s dynamic promises to type-i workers by cumulating past multipliers on (3) where we have

divided the participation constraint by λw(θijt).

The firm’s first-order condition for labor, Nijt = µinijt, is key for our analysis

νijt = χijt︸︷︷︸
marginal product of labor

+Mijt
Unit

Ucit

1

ω

(
nijt
nit

) 1
ω
−1 1

nit︸ ︷︷ ︸
source of monopsony distortion

+Qt,t+1(1− σ)νijt+1. (15)

Here νijt, referred to as the value of hiring a worker of type i, is the multiplier on the constraint

Nijt+1 ≤ (1−σ)Nijt+λf (θijt)µiaijt and hence gives the value of a marginal increase in the measure

of type i workers to firm j in t. The first term in (15), which is positive, is the flow value in

production of assigning these workers to a marginal machine as captured by χijt, which is the

multiplier on the adding-up constraint on labor. The second term, which is negative, summarizes

how the greater cost of hiring more workers of the same type tightens the participation constraints

in (3). This term, which is equal to the derivative of the first term on the left side of (14) with
9We have suppressed notation for individual families within the type i, so these calculations can be thought of as

performed at the individual family level after imposing symmetry across individual families of type i.
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respect to nijt, describes the impact of an additional measure of employed workers of type i on these

constraints. Formally, it captures the effect of an increase in nijt on the flow disutility of work for

workers of type i, ∂
∂nijt

(
nijt

nit

) 1
ω
= 1

ω

(
nijt

nit

) 1
ω
−1

1
nit

, converted to units of consumption and, hence,

output through the term Unit/Ucit, and scaled by the shadow price Mijt. The third term captures

that only 1− σ of these wokers will remain employed at t+ 1.

Monopsony Distortions. Here monopsony power, ω < ∞, reduces the present value of a worker

to the firm in (15) and distorts firms’ job creation and wage-setting relative to the competitive

equilibrium. To see how, note that the first-order condition for vacancy posting aijt is

κi
λf (θijt)

= Qt,t+1 (νijt+1 −Wijt+1) . (16)

That is, firms post job vacancies until the marginal cost of hiring a worker, κit/λf (θijt) on the left

side of (16), equals the marginal benefit, the right side. Here the marginal benefit is the present

value having a worker that starts working t + 1 minus the wages paid to that worker. Because

the monopsony distortion lowers a firm’s present value of employing workers, νijt, firms post fewer

vacancies and hire fewer workers than in a competitive search equilibrium.

Combining the first-order conditions for market tightness θijt and wages Wijt+1 gives

Wijt+1 = ηνijt+1 − (1− η)Vit+1.

Hence, the present value of wages Wijt+1 is the marginal value of workers of type i to firm j minus

a negative term, namely the disutility of work of workers of type i, weighted by the elasticity of the

matching function through η and 1− η. Thus, since a firm’s monopsony power lowers the value of

a worker to a firm, νijt+1, it also lowers wages.

Firm Investment Decisions. We now examine firms’ investment decisions, which determine

the evolution of the capital stock and the different types of capital it consists of. Together, these

decisions determine how the elasticity of substitution across workers evolves over time. The in-

vestment problem is potentially complex because a firm must choose Xjt(v), namely, the amount

to invest in capital of each possible labor intensity v ∈ RI in each period t. As we show in the

next proposition, this problem is tractable since in each t, a firm invests in only one type of labor

intensity of capital, vt. We characterize this problem under a single-peakedness assumption that∑∞

τ=1
Qt,t+τ (1− δ)τ−1

∫ ∞

εt,t+τ

[
Atεf(v)−

∑
i
χit+τvi

]
π(ε)dε (17)

is single-peaked in v. We drop the firm subscript j for simplicity.
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Proposition 2. Under (17), Xt(v) > 0 for at most one type of capital denoted vt that solves

vt = argmax
v

∑∞

τ=1
Qt,t+τ (1− δ)τ−1

∫ ∞

εt,t+τ

[
Atεf(v)−

∑
i
χit+τvi

]
π(ε)dε, (18)

where εt,t+τ = ε(vt, At;χt+τ ) is the idiosyncratic productivity threshold for capital made in period t

to be utilized in period t+ τ for τ ≥ 1. Also, if Xt(vt) is strictly positive, then

1 =
∑∞

τ=1
Qt,t+τ (1− δ)τ−1

∫ ∞

εt,t+τ

[
Atεf(vt)−

∑
i
χit+τvit

]
π(ε)dε. (19)

To prove this proposition, we first consider the first-order condition for Kjt+τ (v,At), which is

the capital installed in period t with productivity At in use in t+ τ , given by

qt,t+τ (v) =

∫
ε
ut+τ (v,At, ε)

[
Atεf(v)π(ε)−

∑
i
λit+τ (v,At, ε)vi

]
dε.

Using the cutoff form of the utilization rule and the first-order condition for Nit(v,At−τ , ε), namely,

λit(v,At−τ , ε) = χitπ(ε), gives qt,t+τ (v) =
∫∞
εt,t+τ

[
Atεf(v)−

∑
i χit+τvi

]
π(ε)dε which when substi-

tuted in the investment first-order condition µt(v) = 1−
∑∞

τ=0Qt,t+τ (1− δ)τ−1qt,t+τ (v) gives

µt(v) = 1−
∑∞

τ=1
Qt,t+τ (1− δ)τ−1

∫ ∞

εt,t+τ

[
Atεf(v)−

∑
i
χit+τvi

]
π(ε)dε. (20)

We use (20) to show that firms invest in only one type of capital in t. To do so, note that since

µt(v) is a Lagrange multiplier, it has a minimum value of zero. Also, if the second term on the

right side of (20) is single-peaked in v, then there exists a unique value of v—denoted by vt—that

achieves that minimum.10 Then, µt(v) > 0 for all v ̸= vt, which by complementary slackness implies

that Xt(v) = 0 for all such v. For the optimal type vt, (20) holds with µt(vt) = 0, which establishes

(19). Since this optimal type vt minimizes the right side of (20), it equivalently solves the problem

(18). So we have established the proposition.

The first-order condition for the choice of the optimal labor intensity {vi} in (18) is∑∞

τ=1
Qt,t+τ (1−δ)τ−1

∫ ∞

εt,t+τ

Atε
∂f(vt)

∂vi
π(ε)dε =

∑∞

τ=1
Qt,t+τ (1−δ)τ−1

∫ ∞

εt,t+τ

χit+τπ(ε)dε, (21)

so firms choose this labor intensity to equate the present value of the marginal product of a type-i

worker to the present value of the shadow cost of employing that worker over the life of a unit

of capital of type vt. The discounting of these present values is by the price of output Qt,t+τ in

period t + τ times the share of capital remaining, (1 − δ)τ−1. The marginal product of type-i
10Note that the expression (17) being single-peaked in v is weaker than it being concave in v. In our environment

(17) with partial utilization of capital, it is not concave. In this sense, this proposition generalizes that of Proposition
3 in Atkeson and Kehoe (1999) which assumed full utilization and in which the analogous term to (17) was concave.
We have found that the term in (17) is single-peaked in all our quantitative work.
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worker in period t+ τ is the product of the average idiosyncratic productivity of the capital that is

utilized,
∫∞
εt,t+τ

επ(ε)dε, the vintage productivity of the capital, At, and the marginal product of the

intensive-form putty-putty production function fi(vt). The shadow cost of the worker in period t+τ

is the share of the capital that is utilized,
∫∞
εt,t+τ

π(ε)dε, times the shadow cost of the worker using

that capital, χit+τ . Finally, equation (19) equates marginal revenues, namely the present value of

a firm’s shadow profits over the life of the marginal unit of capital of type vt, to the marginal cost

in consumption goods of that unit of capital, which is 1.

2.3 Equilibrium Along the Balanced Growth Path

To build intuition for how our model works we start with the analysis of its BGP. To be consistent

with balanced growth, we assume that vacancy-posting costs grow at the same rate as the economy,

κit = (1 + g)tκi, and that the representative type-i family has preferences

Ut(cit, sit, nit) = log
[
cit − (1 + g)tv(nit)− (1 + g)th(sit)

]
.

As in Greenwood, Hercowitz and Huffman (1988), these preferences feature no wealth effects on

labor supply so that equilibrium in the labor market is independent of the consumption allocation

along the BGP. We scale the disutility of work and labor market search by (1 + g)t so that as

consumption and wages along the balanced growth path grow at rate g, and the optimal amount

of work and search stay constant. Consumption, investment, output, wages, and the disutility of

work and job search all grow with the economy. With “tilde”, we denote detrended versions of

these variable, say detrended wages w̃it = wit(1 + g)−t, which are constant along the BGP. Letting

Πu(ε) =
∫∞
ε π(ε)dε denote the fraction of capital above a cutoff level ε, Πp(ε) =

∫∞
ε επ(ε)dε denote

the average idiosyncratic productivity of utilized capital, and β̃ = β/(1 + g), we have

Lemma 3. Along the balanced growth path, the labor allocations and wages are determined by

a) optimal cut-off for idiosyncratic productivity of capital ε1 = (1 + g)(1− α)m(ε1) where

m(ε1) =

∑∞
τ=0 β

τ+1(1− δ)τ (1 + g)−τ−1Πp((1 + g)tε1)∑∞
τ=0 β

τ+1(1− δ)τΠu((1 + g)tε1)
;

b) zero profits on investment 1 = α
[∑∞

τ=0 β̃
τ+1(1− δ)τΠu((1 + g)tε1)

]
f(ṽ);

c) optimal labor intensities satisfy χ̃i = fi(ṽ)m(ε1);

d) free entry in vacancy posting and wages satisfy

κi = βλf (θi)
fi(ṽ)m(ε1)− w̃i − v′(ni)/ω

1− β(1− σ)
and w̃i = η[fi(ṽ)m(ε1)− v′(ni)/ω] + (1− η)v′(ni);

e) household optimal search h′(si) = βλw(θi)[w̃i − v′(ni)]/[1− β(1− σ)];
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together with labor market clearing µini/ṽi = µ1n1/ṽ1, i = 2, . . . , N, market tightness θi = ai/si,

and the steady state law of motion for employment, σni = λw(θi)si.

Notice that these equilibrium equations define a system of 1+6N equations in 1+6N variables

ε1, ṽi, ni, θi, si, ai, and w̃i. So in this precise sense, with our preferences, the labor block of

the model can be solved independently of the rest of the model, which determines consumption,

investment, output, and so on. It will prove useful to define the corresponding labor allocations for

the competitive search equilibrium, εc1, ṽci , nci , θci , sci , aci , and w̃c
i , as those the solve the same set of

conditions except for those under d), which are replaced by

κi = λf (θi)[fi(ṽ)m(ε1)− w̃i]/(ρ+ σ) and w̃i = η[fi(ṽ)m(ε1)] + (1− η)v′(ni). (22)

It is also useful to note for later that the cutoff level of idiosyncratic productivity is the same under

the monopsonistic and the competitive allocations. The reason is that a) and b) determine the

cutoff independently of the other equations. We summarize this feature with the following lemma.

Lemma 4. Along any BGP, the utilization threshold ε1 is independent of the degree of firm

monopsony power ω, namely, ε1 = εc1.

Intuitively, the utilization schedule is tied to capital’s share of income, which is constant given

our Cobb-Douglas formulation for f(v). In Section 3, this lemma will be useful because it also

implies that the utilization schedule is independent of labor market policies, which helps shed light

on why the long-run effects of the those policies are similar to those in the putty-putty model.

Condition c) for firms choice of optimal labor intensities on new capital equates the the shadow

cost of type-i labor χ̃i to the marginal product of that labor, fi(ṽ), adjusted for changes in utilization

and the relative vintage productivity over the life of the machine. Since this utilization adjustment

is a feature of the capital stock, it is common for all worker types i, in that the second term in

this expression does not depend on i. Thus, taking ratios of this expression across two workers

of different types i and i′ gives χ̃i/χ̃i′ = fi(ṽ)/fi′(ṽ). In our quantitative work in Section 4, we

will find that the markdown of wages below workers’ marginal products is approximately χ̃i ≈

(1 + 1/ω)w̃i along the BGP. This relationship implies that the ratio of these two workers’ wages

satisfies w̃i/w̃i′ ≈ fi(ṽ)/fi′(ṽ). Hence, the long-run elasticities of substitution between workers are

inherited from the putty-putty production function f(v) and the putty-clay aspect of production

is irrelevant because by being able to choose different capital intensities, a firm in the long run can

freely adjust the use of any inputs, as shown in Figure 1.

Since f(v) = G(v)1−α is the intensive form of F (K,N) = KαG(N)1−α, the wage ratio w̃i/w̃i′
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approximately equals Gi(ṽ)/Gi′(ṽ), which is the key condition used in the literature to estimate the

elasticity of substitution in production between different worker groups. We exploit this fact later

to rely on existing estimates of labor-labor substitutability to pin down the parameters of G(n).

3 Understanding Labor Market Policies
We now turn to the labor market policies that we examine to illustrate our framework. To moti-

vate this discussion, we first show that a combination of worker type-specific minimum wages and

vacancy-posting subsidies can eliminate the monopsony distortions in our model. Although these

policies provide a useful benchmark, they are difficult to implement because they require targeting

each worker type. Therefore, we analyze two simple policies that are often used in practice to help

improve the labor market outcomes of low-earning workers: a uniform minimum wage or a targeted

transfer conditional on working, such as the Earned Income Tax Credit (EITC). In this section, we

use the BGP to qualitatively explain how the policies affect outcomes in the long run.

3.1 Distortions to Wages and Job-Finding Probabilities

We start by examining the distortions that monopsony power introduces to wages and job creation.

Monopsony Distortions. Firms in our model compete for workers along two distinct margins: the

value of wages they offer and, through the number of vacancies they post, the tightness of the

market for their jobs. Both margins are distorted. Wage distortions arise because hiring a marginal

worker of a given type increases the marginal disutility of work of all inframarginal hires of a given

type in the same family. Hence, a firm needs to compensate those inframarginal workers with a

higher wage when it hires additional workers of the same type. In this precise sense, firms face an

upward-sloping supply curve of workers in offered wages. Likewise, as a firm increases its vacancies

for a given type of worker, it increases the worker’s job-finding probability. So a firm also faces an

upward-sloping curve for workers in offered vacancies and, hence, in offered market tightness.

Formally, the parameter ω enters the firm’s first-order conditions associated with the choices of

wages Wijt+1 and market tightness θijt, leading to a downward distortion of both relative to their

levels in a competitive search equilibrium. The markdown for wages is an extension to a dynamic

setting of the standard markdown that arises in imperfectly competitive models of the labor market

with static labor supply. The markdown for market tightness θijt is novel and reflects the idea that

as more vacancies are posted—holding wages fixed—market tightness increases. Hence, in this

precise sense, firms’ monopsony power distorts both the supply and the demand for labor.
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To build further intuition, consider the participation constraint along the BGP:

λw(θij)

ρ+ σ

[
w̃ij − v′(ni)

(
nij
ni

) 1
ω
]
≥ W̃i, (23)

where ρ = 1
β −1 is the rate of time preference, w̃ij is the detrended flow wage, and v′(ni) is the flow

disutility of labor supply. Now, suppose that firm j contemplates hiring dNij = µidnij additional

workers of type i along the BGP. A firm attract such workers, and thus satisfy the participation

constraint (23) for them, in two ways. First, it can raise the flow wage it pays. The required wage

increase—obtained by differentiating (23) holding as an equality with respect to w̃ij and nij holding

λw(θij) fixed—at a symmetric equilibrium gives

dw̃ij

dnij
=
v′(ni)

ωni
> 0. (24)

Online Appendix A converts (24) into an elasticity and shows that d log nij/d log w̃ij ≈ ω. Hence,

the parameter controlling the degree of monopsony power can, loosely speaking, be interpreted as

firm-specific labor supply elasticity in response to permanent changes in wage offers along the BGP.

The second way in which firm j can attract such workers is by posting more vacancies, thereby

raising the job-finding probability λw(θij). The required increase in λw(θij)—obtained by differ-

entiating (23) with respect to λw(θij) and and nij holding w̃ij fixed—at a symmetric equilibrium

gives
dλw(θij)

dnij
=

(λw(θij)/ω)(v
′(ni)/ni)

w̃i − v′(ni)
> 0. (25)

Taken together, (24) and (25) illustrate how a worker’s participation constraint encodes firm-specific

(inverse) labor supply curves with respect to both wages and the job-finding rate, which are the

two dimensions in which firm monopsony power manifests itself.

The empirical literature often summarizes the degree of firm monopsony power in wage setting

using the wage markdown, namely, the ratio of workers’ wages relative to their marginal product,

χ̃i = fi(ṽ)m(ε1). Along the BGP this markdown is

w̃i

fi(ṽ)m(ε1)
=

[
1 +

1

ω
× v′(ni)

v′(ni) +
η

1−η (ρ+ σ) κi
λf (θi)︸ ︷︷ ︸

monopsony component

+
(ρ+ σ) κi

λf (θi)

v′(ni) +
η

1−η (ρ+ σ) κi
λf (θi)︸ ︷︷ ︸

efficient component

]−1

, (26)

The monopsony component reflects firms’ monopsony power, which distorts allocations relative to

an efficient equilibrium. The efficient component exists even in the absence of firm monopsony

power (ω → ∞) and captures that hiring a worker requires firms to incur the costs κi/λf (θij) for

which they must be compensated over the life of a match. Indeed, in each period a firm needs only
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recoup the annuitized value of such costs, (ρ+σ)κi/λf (θi), which we find to be quantitatively small.

3.2 Scope for Policy

In our economy, monopsony power, as captured by the degree ω of substitutability of jobs in workers’

preferences, is the only source of distortions: when ω becomes large, monopsony power disappears

and the equilibrium becomes efficient.

Lemma 5. As ω → ∞, the allocations of the monopsonistically competitive search equilibrium

converge to those of the competitive search equilibrium, which are efficient.

Hence, implementing the efficient allocation requires a set of instruments that can support the

corresponding competitive search equilibrium. We show that it is feasible to do so with type-specific

minimum wages combined with type-specific vacancy-posting subsidies.

Proposition 6. In the BGP of the symmetric monopsonistically competitive search equilibrium the

efficient allocations can be implemented through a combination of a minimum wage for each worker

type i equal to that type’s competitive search equilibrium wage wc
i and a subsidy to vacancy posting

for each worker type i equal to 1− τi = [w̃c
i − v′(nci )]/[w̃

c
i − v′(nci )(1− 1/ω)].

To understand this result, recall that the conditions defining a competitive equilibrium differ

from those defining a monopsonistically competitive equilibrium only in the free entry condition and

the wage equation. If our model had static relationships between firms and workers, the government

could implement the competitive allocations by setting the minimum wage policy wi = w̃c
i for

each i. To see what would happen in our model with dynamic relationships, note first that under

such policies, since firms want to lower wages below their competitive levels, the minimum wage

constraints would all bind. Hence, under these policies the monopsony wage equation would be

replaced by wi = w̃c
i and that would fix the direct distortion to the wage and the indirect distortions

to optimal search and vacancy posting that emanate from them.

But that policy alone would not eliminate the direct distortions to the vacancy posting condition

from the v′(nci )/ω term. To build intuition, suppose by way of contradiction that the minimum wage

policy did implement the competitive allocations. Online Appendix B shows that evaluating the

vacancy-posting condition at the competitive allocations with this minimum wage policy gives

κi = λf (θ
c
i )
fi(ṽ

c)m(ε1)− w̃c
i

ρ+ σ

[
w̃c
i − v′(nci )

w̃c
i − v′(nci )(1− 1/ω)

]
. (27)

Comparing (27) to its competitive analog, (22), we see that in the competitive allocations the term

in square brackets in (27) equals 1. Since in (27) the term in square brackets in less than one, at
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such policies a monopsonist would choose to deviate down to lower the job-finding rate below the

competitive level. Intuitively, this policy fails because it only eliminates one of the two distortions.

To eliminate the distortion to vacancy posting, we use a second set of instruments, namely, type

specific entry subsidies τi. We choose these subsidies so that when evaluating the monopsony free

entry condition under the joint policies of entry subsidies and minimum wages the condition

κi(1− τi) = λf (θ
c
i )
fi(ṽ

c)− w̃c
i

ρ+ σ

[
w̃c
i − v′(nci )

w̃c
i − v′(nci )(1− 1/ω)

]
becomes

κi = λf (θ
c
i )
fi(ṽ

c)m(ε1)− w̃c
i

ρ+ σ
.

But it does, since dividing these two equations gives us 1− τi from the proposition, completing the

proof. Also note that as monopsony power diminishes, ω gets larger,the optimal subsidy falls to

zero. Finally, if we expand the set of available instruments to include time-varying minimum wages

and subsidies for vacancy creation, then the same result holds outside the BGP.

3.3 Minimum Wage

We study the long-run implications of a uniform minimum wage policy defined by a floor wt =

(1+g)tw on the flow paid wage for all workers that grows along with the economy. Along the BGP,

this policy can be interpreted as introducing a fixed wage floor w in detrended terms. We compare

the outcomes of this policy to those under an initial BGP in which wages are determined by the

monopsonistically competitive equilibrium that follow w0
ijt = (1 + g)tw0

ij .

For a given worker, an increase in the minimum wage up to that worker’s competitive wage

encourages firms to hire that worker because it eliminates the monopsony force a firm takes into

account that hiring such a worker raises the wages of all inframarginal workers. For increases in the

minimum wage above a worker’s competitive wage, the minimum wage discourages firms from hiring

that worker because it requires a firm to pay that worker more than the worker’s marginal product.

In our model, a small minimum wage can reduce the marginal cost because it increases the return

from searching, making it easier to satisfy the participation constraint. Intuitively, for worker types

for whom the minimum wage is only slightly larger than their current wage—namely, the minimum

wage is set no higher than what that worker would be paid in the competitive equilibrium—the

second effect dominates, and hiring increases. But for worker types whose current wage is much

lower than the minimum wage, the first effect dominates, and hiring decreases.

Intuition from the BGP. To illustrate the forces that shape the long-run effects of the minimum

wage in our model, Figure 3 shows how different levels of the detrended minimum wage w affect
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Figure 3: Long-Run Effects of the Minimum Wage on Employment
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Notes: Percentage change in BGP employment rates (left panel) and detrended labor income (right panel) of
select non-college worker types as a function of the minimum wage.

the employment of three types of non-college workers in the new BGP.11 These lines, generated by

our quantified model described later show that long run employment has an inverted U shape with

respect to the minimum wage. To understand why, consider the employment curve for the worker

who earns the equivalent of a $7.50 wage in the initial BGP. Because of monopsony power, this

initial wage wi is marked down relative to its efficient level in the associated competitive search

equilibrium, wc
i . Then, small increases in the minimum wage above the initial wage wi increase

employment by bringing wages closer to their efficient level. This employment curve eventually

reaches a peak, which is roughly the efficient wage level wc
i . Increasing the minimum wage above

this level leads employment to fall. Intuitively, for any type of worker, as the minimum wage is

raised from the monopsony level to the efficient level, monopsony distortions are mitigated. For

wages higher than that there is no monopsony distortion to eliminate, so employment falls.

Distributional Implications. Comparing the employment response across the three different

worker types reveals a long-run distributional trade-off: a single minimum wage cannot simulta-

neously correct the monopsony distortion for all workers. Since workers have different levels of

productivity, the levels of efficient wages wc
i and therefore the peaks of the employment curves are

heterogeneous across workers. This feature implies that the minimum wage is too blunt an instru-

ment to benefit all workers in the economy. For example, a small minimum wage would increase

the labor income of workers initially earning low wages but would not affect the labor income

of higher-productivity workers. By contrast, a high minimum wage would increase the income of
11Throughout the paper, we index each of these levels by the equivalent hourly wage which would bind for the

same amount of workers in the 2017-2019 ACS data to which we calibrated the model.
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higher-productivity workers but reduce employment and income of the lowest-productivity ones.

3.4 Targeted Transfers

We turn to the long-run effects of transfer payments to households conditional on labor market

earnings. These transfer payments can be more targeted to specific worker types than a minimum

wage and, therefore, be more effective at redistributing resources to their intended beneficiaries. In

the long run, transfer payments can either alleviate or exacerbate monopsony distortions, depending

on how they are designed. We then discuss a particular program, the Earned Income Tax Credit.

Transfers. We consider a general transfer policy such that a worker earning a flow wage wijt

in period t receives an additional payment Tt(wijt), so that a worker’s after-transfer earnings are

At(wijt) = wijt+Tt(wijt). We let At(wijt) = (1+g)tA(wijt/(1+g)
t) for some time-invariant function

A so that the policy is consistent with balanced growth. These transfers are financed through a

linear tax on firms’ profits. We assume that wage payments, vacancy-posting costs, and investment

costs are fully deducted from this profit tax, implying that the profit tax does not affect any of the

firms’ decisions. The first-order condition for households’ search intensity sijt becomes

− Usit

Ucit
= λw(θijt)Qt,t+1(W

H
ijt+1 + Vijt+1) if sijt > 0, (28)

whereWH
ijt+1 = At+1(wijt+1)+Qt+1,t+2(1−σ)At+2(wijt+2)+Qt+1,t+3(1−σ)2At+3(wijt+3)+. . . is the

present value of after-transfer wage payments to a type-i family. Hence, transfer payments raise the

return from searching on the right side of (28), incentivizing families to increase their search effort

and the participation constraint becomes λw(θijt)(WH
ijt+1+Vijt+1) ≥ Wit. This policy affects firms’

decisions by changing the shadow price on this constraint from λf (θijt)aijt to λf (θijt)aijt/A′
t(wijt+1).

If the marginal transfer rate is positive, so that A′
t(wijt+1) > 1, then a marginal increase in a firm’s

wage offer is accompanied by an increase in the transfer payment. This effect lowers the shadow

price of workers and reduces the monopsony distortion.

Intuition from the BGP. We next summarize the effect of the policy along the new BGP.

Lemma 7. Under the transfer policy the labor allocations for the monopsonistic equilibrium solve

the same equations as those in Lemma 3 with the optimal search condition replaced by

h′(si) =
λw(θi)

ρ+ σ

[
A(wi)− v′(ni)

]
, (29)

and the vacancy posting condition replaced by

κi
λf (θi)

=
1

ρ+ σ

[
χi − wi −

v′(ni)

ωA′(wi)

]
. (30)
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Figure 4: The EITC and its Long-Run Effects on Non-College Employment
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Notes: EITC transfer schedule (left panel) and its impact on employment rates for individual non-college types
in the new BGP, as a function of workers’ wage in the initial BGP (right panel). For reference, right panel also
plots effect of the $15 minimum wage on employment rates as well.

A positive level of transfers A(wi) > wi stimulates workers’ search for jobs in (29) by increasing

the marginal gain to households of increasing search. In contrast, a positive marginal transfer A′(wi)

in (30), stimulates firms to post vacancies because a firm internalizes that as it raises the wage to

attract an additional worker, the government transfer rises along with it. So, on the upward-sloping

portion of the EITC the government effectively subsidizes the hiring of additional workers.

Earned Income Tax Credit. We model the EITC using (detrended) the transfer schedule

plotted in the left panel of Figure 4. We make this EITC schedule budget-equivalent to a $15

minimum wage by choosing the linear profit tax rate which funds the EITC to raise tax revenues

equal to the firms’ lost profits due to the minimum wage. In the phase-in region the transfer is

proportional to household income with a positive marginal transfer rate of 25%; in the plateau

region, the transfer is constant at its maximum benefit; and in the phase-out region, the transfer is

reduced proportionally to any additional income with a negative marginal transfer rate of 22%. In

the phase-in region, households face both a positive average subsidy rate, since the total tax credit

is positive, and a positive marginal subsidy rate, since the credit is being phased in.

The right panel of Figure 4 plots the effects of the EITC on the employment of non-college

workers in the new BGP. The lowest-wage workers in the phase-in region face a positive average

transfer rate, which increases their search effort, and a positive marginal transfer rate, which de-

creases their monopsony distortion. Both of these effects contribute to higher long-run employment

rates for this group. Workers in the plateau region still face a positive average transfer but their

marginal transfer is zero, so their monopsony distortion is not impacted, leading to a smaller in-
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crease in employment. Finally, workers in the phase-out region face a negative marginal transfer

rate, which exacerbates the monopsony distortion leading to a decline in their employment.

4 Quantification
We now parameterize our model in order to quantitatively study the speed of transition induced

by these labor market policies. We set a model period to one month.

4.1 Parametrization

We assume that household type i = (e, z) is an education-productivity pair with e ∈ {L,H}, where

L denotes workers with less than a bachelor’s degree, H denotes workers with at least a bachelor’s

degree, and z denotes their permanent productivity level z. The productivity level z is drawn from

an education-specific log-normal distribution with mean zero and variance σez. A type-i family has

preferences within the Greenwood, Hercowitz and Huffman (1988) class:

Ut(cit, sit, nit) = log

[
cit − (1 + g)t

(
ψe
n

n
1+1/γn
it

1 + γn

)
− (1 + g)t

(
ψe
s

s
1+1/γs
it

1 + γs

)]
.

A family’ disutility of work and labor market search are governed by the scale parameters ψe
n and

ψe
s, which differ between education groups, and the elasticity parameters γn and γs. The long-run

production function is F (K,N) = KαG(N)1−α, where N is the vector of labor types. The labor

aggregator G(N) with e ∈ {L,H}, is given by

G(N)=
[
ξNL(N)

φ−1
φ +(1− ξ)NH(N)

φ−1
φ

] φ
φ−1 and Ne(N) =

[∑
i∈Ie

zi(Ni)
ϕ−1
ϕ

] ϕ
ϕ−1

. (31)

This CES production function features an outer nest between labor of each education group e and

an inner nest among labor of different productivity levels within an education group. Versions of

this functional form has been extensively used and estimated in the labor economics literature (see

Katz and Murphy (1992), Card and Lemieux (2001), and Borjas and Katz (2007)).

4.2 Disciplining Key Features

We begin by providing intuition for how we parameterize key features of our model that relate to

the three main forces that determine the transition dynamics of the economy in response to labor

market policies. These are i) capital utilization, which is connected to how quickly firms choose

to let existing workers attrit in the short run when wages change; ii) the long-run elasticities of

substitution across workers, which controls how much firms eventually substitute across different

types of workers; and iii) the degree of firm monopsony power, which determines the magnitude of

the labor market distortions that labor market policies can potentially correct.
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Capital Utilization. The dynamics of capital utilization is shaped by three parameters: the

growth rate of the economy g and the depreciation rate of capital δ, which together determine the

average utilization rate of different vintages of capital, and the dispersion of idiosyncratic capital

productivity σε, which determines the share of capital utilized within a vintage of capital. We set

the growth rate of the productivity of new capital to imply an average aggregate growth rate g

of 2% per year and the depreciation rate to 15% annually, which matches the aggregate capital

depreciation rate excluding structures. We choose the within-vintage dispersion parameter σε to

match the average utilization rate across all vintages of capital from the U.S. Census Quarterly

Survey of Plant Capacity Utilization (QPC). This survey measures the market value of plants’

production relative to what they could have produced if all capital in a firm was fully utilized and

labor was freely available. We define this capacity utilization rate as∑
τ (1− δ)τXt−τAt−τ−1Π

p(εt,t−τ−1)∑
τ (1− δ)τXt−τAt−τ−1

,

namely, output actually produced divided by the output that would be produced if all capital was

fully utilized, where Πp(ε) is the total productivity of utilized capital. The higher is σε, the more

capital is below the utilization threshold, and so the lower is capacity utilization; see Figure 2. We

choose σε so that the average capacity utilization rate is 75% as in post-2000 data.

Monopsony Power. We choose the degree of firm monopsony power, ω, to match existing esti-

mates of wage markdowns. A growing literature has measured wage markdowns in the United States

and estimated that on average workers are paid between 0.65 and 0.85 of their marginal products

(see Seegmiller (2021), Lamadon, Mogstad and Setzler (2022), Berger, Herkenhoff and Mongey

(2022), and Yeh, Macaluso and Hershbein (2022)) For our baseline, we target the midpoint of this

range, 0.75, but we also explore the sensitivity of our results to smaller wage markdowns. By the

decomposition in (26), wage markdowns in our model reflect both the degree of firm monopsony

power ω and the annuitized value of hiring costs (ρ + σ)κi/λf (θi). We use data on labor market

flows to pin down hiring costs and residually infer ω to match the average wage markdown.

According to Manning (2011), who surveys the empirical literature on hiring costs, a plausible

range for (average) hiring costs is around 34%-156% of one month’s wages. However, since the

average job-separation rate is around 2.5%-4% per month, only a small fraction of these costs needs

to be recouped per month by a firm. In our calibration, average hiring costs are approximately 64%

of one month’s wage, the job-separation rate is 2.8% per month, the interest rate is 4% annually,

and the growth rate is 2% annually. Therefore, the annuitized value of hiring costs that firms must
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recoup each period is only (ρ + σ) κi
λf (θi)

≈ 0.03 × 0.64 = 1.9% of one month’s wage. Through the

lens of our model, this annuitized value of hiring costs along with our estimates of v′(ni) yields

that ω = 3.07. Hence, the efficient component of the markdown is modest and so much so that

reasonable variations in it have a very small effect on the estimate of ω. For example, if we assumed

hiring costs were zero, ω would be equal to 3 and if we assumed they were twice as large as in our

baseline, ω would be equal to 3.18.

Long-Run Elasticities of Substitution. The long-run elasticities of substitution between work-

ers of different abilities in G(N) are governed by ϕ, the elasticity of substitution within education

groups, and φ, the elasticity of substitution across education groups. We set the cross-group elas-

ticity φ to 1.4 and the within-group elasticity ϕ to 4, which are values in the range of the estimates

for them in the labor literature (Card and Lemieux (2001) and Borjas and Katz (2007)). Work

in this literature assumes that different observable groups of workers—for instance, by age or im-

migration status—correspond to different productivity groups z and use residual variation in the

labor supply of these groups to estimate these elasticities of substitution based on the implied vari-

ation in their wages. Although the specific sources of variation that identify these elasticities differ

across studies, the range of these estimates is broadly consistent with our values (see, for example,

Card and Lemieux (2001)). Our value of the between-group elasticity φ is also consistent with the

benchmark value in Katz and Murphy (1992). A concern with borrowing estimates of ϕ and φ

from the literature is that the empirical variation under which these values have been estimated

is different from the time variation on which our analysis mostly relies. In Section 4.4, we address

this concern by showing that the estimators of these parameters common in the literature recover

the true long-run elasticity nearly exactly based on data generated from our model.

4.3 Details

As for the remaining parameters, we externally fix a subset of them and then endogenously pin

down the remaining ones to reproduce important features of U.S. labor markets.

Fixed Parameters. As shown in Table 1, we set the share of college-educated households to

31% in order to match their proportion in the American Community Survey (ACS) over the period

between 2017 and 2019. This share and the distribution of productivity z—pinned down as explained

below—jointly determine the weights µi. We choose a value for the discount factor β of [1.04/(1 +

g)]1/12 so that the annualized real interest rate r equals 4%. We set the parameter γn of the utility

function, which primarily controls the elasticity of labor supply, to 1. Now, there exists a locus

of values for the parameters γs and ψs governing the disutility of labor market search that imply

33



Table 1: Fixed Parameters
Parameter Description Value
Households
NH/(NH +NL) Share of college workers 0.31
β Discount factor ( 1.04

1+g
)−1/12

γn Labor supply elasticity 1.00
γs Search supply elasticity 5.00
χs Scale of search disutility 3.8× 106

Production function
φ Long-run elasticity b/t Nht and Nℓt 1.40
ϕ Long-run elasticity within education group 4.00
δ Capital depreciation (annualized) 15%
g Long-run growth rate (annualized) 2.0%
Labor market frictions
σ Job destruction rate 2.8%
η Elasticity of matching function w.r.t. unemployed 0.50

approximately identical labor market outcomes along the BGP but different responses of search

effort to policy changes. We choose a pair of values on this locus, γs = 5 and ψH
s = ψL

s = 3.8× 106,

that imply a relatively muted response of search effort to the minimum wage as in data (see Adams,

Meer and Sloan (2022)).12 We set the exogenous rate of match separation σ to 2.8% per month,

which is the Abowd-Zellner corrected estimate of the separation rate estimated by Krusell et al.

(2017) from the Current Population Survey (CPS). We fix the elasticity of the matching function

with respect to the measure of searchers η to 0.5 as in Ljungqvist and Sargent (2017).

Fitted Parameters. We set the remaining parameters in Table 2 to match the statistics in Table

3. The parameters of the worker productivity distribution and the production function govern the

distribution of income in the economy. We then choose the dispersion of productivity σez to match

the ratio of the 50-th to the 10-th percentiles of the wage distribution within each education group

e ∈ {L,H}. This target ensures that we reproduce the left tail of each distribution, which is most

directly affected by the policies we examine. Note that the weight placed on non-college labor in

G(N) in the long-run production function, ξ, determines the share of total labor income accruing

to non-college workers, whereas the Cobb-Douglas coefficient on labor in production, 1−α, controls

labor’s total share of income in aggregate output. We pin down these parameters accordingly.

We choose the parameters governing hiring costs to match labor market flows so that the

degree of monopsony power ω is determined residually so as to reproduce average wage markdowns.

Hiring costs κit/λf (θit) are pinned down by both the size of vacancy-posting costs (κ0 in κit =

κ0(1+g)
tzi) and the efficiency of the matching function (the parameter B in m(ait, sit) = Bsηita

1−η
it )

since λf (θit) = Bθ−η
it . As is typical in search models, the size of the vacancy-posting costs κ0 is

12These parameters primarily govern the response of unemployment and labor force participation to the policies we
analyze. Our results focus on changes in the employment rate which are unaffected by the choice of these parameters.
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Table 2: Fitted Parameters
Parameter Description Value
Worker productivity distribution logN (0, σe

z)
σL
z SD of non-college z 0.69
σH
z SD of college z 0.84

Production function
α Exponent on capital in production 0.24
ξ Weight on non-college labor in production 0.42
Monopsony
ω Monopsony power 3.07
Search frictions
B Matching function productivity 0.50
κ0 Vacancy-posting costs (normalization) 0.32
Labor Disutility
ψL

n Weight of non-college labor disutility 3.84
ψH

n Weight of college labor disutility 4.79
Capital Utilization
σε Dispersion in capital productivity 0.25

Notes: Parameters that are endogenously chosen to match the statistics in Table 3.

not separately identified from the efficiency B of the matching function because, by the free-

entry condition, only the ratio κit/(Bθ−η
it ) is relevant for labor market outcomes. Following Shimer

(2005), we normalize κ0 so that average market tightness is 1 and choose B to match an average

unemployment rate of 5.9% in the United States before the Great Recession. This value implies an

average job-finding rate of 0.44 in our model, compared to 0.45 in the data (see Shimer (2005) and

Kehoe et al. (2023)). The remaining parameters relevant for labor market outcomes are those for

the disutility of labor supply, {ψe
n}, which are pinned down by the average employment rates of each

education group. Finally, the dispersion of the distribution of idiosyncratic capital productivity σε
is primarily determined by the average capacity utilization rate, as described above.

4.4 Model Fit and Validation

We now discuss how the model fits well the targeted moments, how it also matches key untargeted

features of the data, and how we validate our key parameter values.

Wage Distribution and Markdowns. As apparent from Table 3, the average wage markdown,

the aggregate and college income shares, the employment rates by education group, the unemploy-

ment rate, and average capacity utilization are nearly identical in the model and in the data. The

model also matches the 50-10 wage ratio within each education group, though not perfectly given

our parsimonious parametrization of the productivity distribution—we specify worker productivity

z as log-normally distributed for each education group with the mean normalized to 1.

The model replicates key features of the distribution of wages of non-college workers. Figure 5

left panel compares this distribution in the model and in ACS data. In the model, we discipline it
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Table 3: Targeted Moments
Statistic Description Data Model
Average wage markdown
E[wi]/E[χi] Average wage markdown 0.75 0.75
Wage Distribution, ACS 2017-2019
wL

50/w
L
10 Non-college 50-10 ratio 2.04 2.00

wH
50/w

H
10 College 50-10 ratio 2.30 2.17

Income shares
E[wiNi]/Y Aggregate labor share 0.57 0.57
E[wH

z N
H
z ]/E[wiNi] College income share 0.55 0.55

Unemployment rate
E[si]/(E[si] + E[Ni]) Average unemployment rate 5.9% 5.9%
Employment Rates
EL[ni] Non-college employment rate 0.47 0.47
EH [ni] College employment rate 0.62 0.62
Capacity Utilization Rate
E[Φp(ετ )] Average capacity utilization 0.75 0.75

Notes: Average wage markdown is the midpoint of the range of estimates in the literature. The statistics on
the wage distribution by education group, the college income share, and the employment rates are calculated
using ACS data (2017-2019). The aggregate labor share is from Karabarbounis and Neiman (2014). The average
unemployment rate is the average unemployment rate from the BLS. The average capacity utilization rate is
drawn from U.S. Census Quarterly Survey of Plant Capacity Utilization (QPC).

Figure 5: Non-College Wages and Markdowns

Notes: The left panel plots deciles of the non-college wage distribution in our model and the ACS data (2017-
2019). The right panel plots steady-state markdowns wLz/χLz for select non-college worker types. “Equilibrium
markdown” corresponds to our baseline model. “Efficient markdown” corresponds to the equilibrium of our model
without monopsony power (ω → ∞). The x-axis is the wage wLz of a type-z non-college worker.

by targeting the 50-10 wage ratio to match the left tail of this distribution. Hence, we ensure that a

$15 minimum wage binds for the same fraction of non-college-educated workers in the model as it

does in the data—both 45%. Although the model slightly overpredicts wages at the top of the wage

distributions for non-college workers, but these groups are barely affected by our experiments.

The right panel of Figure 5 plots the wage markdown for non-college workers of different pro-

ductivity as a function of their wage, which is nearly constant at the value of 0.75 we target. As
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explained below, this is an important reason why our model implies values for ϕ in line with existing

estimates, which are predicated on static, perfectly competitive models of the labor market.

Long-Run Elasticities of Substitution Across Workers. We rely on estimates from the

labor economics literature to discipline the long-run elasticities of substitution across workers, φ

and ϕ. These parameters are commonly estimated using the variation over time in the supply of

workers with different levels of education, age or immigration status and the associated changes

in their wage rates. This approach is based on static models of competitive labor markets with

CES production—assumptions that do not hold in our model. Nonetheless, we now show that the

implied estimators perform well on data generated from our model because they are derived from

a reduced-form relationship between wage ratios and labor supplies implied by those models that

approximately holds in our model as well.

To elaborate, we focus on the within-education group elasticity of substitution across workers,

ϕ, which is a key parameter.13 We follow Card and Lemieux (2001)’s classic estimation strategy

based on a static, competitive labor market in which firms have the same production function as our

long-run function G(N). For each education group, these authors assume that workers with different

experience (age) differ in their productivity but that all workers with a given level of experience

share the same productivity level. Hence, the ratio of wages of workers with different experience

within an education group is informative about their relative productivity. Their estimator of

the elasticity of substitution of workers with different productivity within an education group, ϕ̂,

exploits the variation in their relative wages induced by changes over time in the relative supply of

workers with different levels of experience—which they interpret as exogenous.

We perform the following exercise to validate our model. Suppose that Card and Lemieux (2001)

observe data generated by our model when the elasticity of substitution across workers is ϕ = 4, a

value in the low range of their estimates. We reproduce the variation in employment used by Card

and Lemieux (2001) by allowing the measures of families µit of each type to vary over time and

then construct a version of Card and Lemieux (2001)’s estimator ϕ̂. In their model, the ratios of

wages of workers with productivity i and i′ from a given education group equals the ratio of their

marginal products, which yields

wit

wi′t
=
zi
zi′

(
Nit

Ni′t

)− 1

ϕ̂

or ∆log
wit

wi′t
= − 1

ϕ̂
∆log

Nit

Ni′t
, (32)

where ∆ denotes the difference operator across two time periods. By (32), we can construct a
13Our results are not sensitive to the across-group elasticity φ since the dispersion in wages within education groups

is much larger than the dispersion across education groups and the substitutability across groups is much lower.
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Table 4: Literature’s Estimation Strategy for Long-Run Elasticity ϕ

True Value Card and Lemieux (2001) Variation
ϕ = 4 ϕ̂ = 3.94

Notes: Results from simulating the model for the time path of measures of families µit as described in text.
True value reports the value of the long-run elasticity of substitution across workers ϕ = 4 used to simulate the
model. Card and Lemieux (2001) Variation reports the estimate ϕ̂ from the regression in (32) using 5-year time
differences, with the exception of the first observation which is a 10-year difference. See Online Appendix D for
details.

standard estimator ϕ̂ by linearly projecting changes in wage ratios on changes in employment

ratios. Following Card and Lemieux (2001), we assume that the first observation is a ten-year time

difference and the rest are five-year ones; see Online Appendix D for details of this exercise. The

second column of Table 4 shows that when we simulate data using ϕ = 4, the estimator described

recovers ϕ̂ = 3.94, which is very close to the true value. Hence, we conclude that the estimates of

the long-run elasticity of substitution in the literature well discipline the value of ϕ in our model.

One reason that our estimator may not perform well is that workers are not paid their marginal

products even in the long run (when putty-clay frictions are irrelevant). Quantitatively, the concern

is unwarranted because wage markdowns are nearly constant across workers of different abilities

along the BGP, the ratios of wages of workers with different productivity approximately equal the

ratios of their marginal products along the BGP. Another concern is that using five-year differences

in employment as in Card and Lemieux (2001) may severely bias our estimates of workers’ sub-

stitutability in production downward toward non-substitutability, since our technology is Leontief

in the short run. This concern is unwarranted in practice because in the experiment described, we

modify the supply of workers (by varying the measure of families of each type) to replicate Card

and Lemieux (2001)’s measured changes in the employment rate of workers with different produc-

tivity within an education group. Since the job-finding rate is high in the data and the model, firms

rapidly absorb incoming workers by adjusting the labor requirements of new capital. Critically, this

adjustment of labor-to-capital ratios is governed by the long-run function f(v), as illustrated in

Figure 1, which reflects the long-run substitutability across workers captured ϕ.

5 Dynamic Effects of Labor Market Policies
We use our quantitative model to study the dynamic effects of various labor market policies.

In particular, we highlight the quantitative importance of our key model features in explaining

transition dynamics to these policies. Our main result is that the transition to a new long-run

equilibrium is slow due to sluggish capital adjustment. This slow-transition result implies that
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Figure 6: Dynamic Effects of the Minimum Wage
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Notes: Transition paths of non-college employment (left panel) and detrended labor income (right panel) after
the introduction of the minimum wage of various sizes, expressed relative to the initial BGP.

the short-run impacts of policies, which the empirical literature mostly focuses on, are not very

informative about their overall effects. We begin by focusing on the minimum wage to illustrate the

framework’s key mechanisms because it allows us to clearly parse out how firms substitute among

different types of workers. We then show that similar insights also apply to the EITC.

5.1 Overview of the Dynamic Effects of the Minimum Wage

We assume that the economy starts in a BGP without any labor market policies and workers are

paid the flow wages w0
ijt = (1+g)tw0

ij—note that this is equivalent to starting with a minimum wage

of $7.25 since in our quantitative model this minimum wage binds on no one. In period 0, a minimum

wage policy—represented by a floor wt = (1+g)tw on the flow wage a firm can pay that grows with

the economy—is unexpectedly introduced. Afterwards, agents perfectly anticipate the resulting

transition path to the new BGP. In the initial BGP, the wages of some of the lower-productivity

workers are below those dictated by the new minimum wage. In period 0, a firm may fire any

measure of these workers it chooses. For the remaining workers, a firm must increase its flow wages

to satisfy the minimum-wage constraint. Finally, for workers for whom the minimum wage does not

bind, a firm must honor its wage commitments from the initial BGP, that is, wijt ≥ max{wit, w
0
ijt}.

We begin by studying the aggregate effects of the policy on non-college workers and then examine

the micro-level adjustments underlying these aggregate effects.

The aggregate effects of the minimum wage in the long run depend on its level. We consider three

illustrative levels that differ in how they qualitatively affect aggregate non-college employment in the

long run: a small minimum wage (equivalent to $8 per hour) that increases long-run employment, a

medium minimum wage (equivalent to $11 per hour) that leaves long-run employment unchanged,
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and a large minimum wage (equivalent to $15 per hour) that reduces long-run employment.

The left panel of Figure 6 illustrates our main result that aggregate employment adjusts slowly to

any such policy change. The small minimum wage induces firms to increase employment by reducing

monopsony distortions for low-productivity workers, but it takes time to do so. Conversely, the large

minimum wage induces firms to substitute away from low-productivity workers, but it takes more

than ten years for this substitution to fully play out. In both cases, the short-run adjustment of

employment is only a small fraction of its eventual long-run change.14 The right panel of Figure 6

illustrates that these slow employment dynamics delays the long-run effect of the minimum wage

on labor income. To see why, note that the minimum wage has two effects on the flow income

witnit: a direct effect through the increase in the wage wit of workers bound by the minimum wage,

which occurs immediately, and an indirect effect through the implied change in employment nit that

plays out over time. For the small minimum wage, these two effects reinforce each other, namely,

the minimum wage directly increases wages upon impact, and indirectly increases employment

gradually over time. Thus, here, the slow adjustment of employment to the minimum wage delays

the total long-run benefits of the minimum wage on income.

For the large minimum wage, firms do not fire any of their initially employed workers on impact

so the minimum wage leads to an immediate increase in the labor income of affected workers. Over

time, however, firms reduce their hiring of the lowest-productivity workers and, hence, their labor

income witnit slowly declines. We show below that these dynamics in labor income are critical for

understanding the total effect of the minimum wage on individual workers.

An important lesson from this analysis is that although a large increase in the minimum wage

might seem desirable, since it leads to a large increase in the labor income of low-productivity

workers in the short run, over time this gain is eroded as employment progressively falls. Hence,

the short-run effects of a large minimum wage increase greatly overstate its total benefits. The

counterpart of this result is that the long-run effects of such a policy by themselves overstate the

total costs of it, because they altogether miss the short-run benefits.

5.2 Understanding the Slow Employment Dynamics

Here we analyze why our model generates slow employment dynamics. We also explain the role of

our vintage structure defined by capital of vintage t having average productivity that is (1 + g)t

times as large as capital built in period 0 and in every vintage, each unit of capital having having
14The medium minimum wage induces non-monotonic transition dynamics due to two conflicting forces: it induces

firms to substitute away from some low-productivity workers, who have become relatively more expensive to employ,
and to substitute towards higher-productivity workers, who are now relatively more attractive.
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Figure 7: Channels of Adjustment of Non-College Employment
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Notes: Transition paths of aggregate non-college employment, expressed as percentage of the total change in the
new BGP. Left panel compares effects of a $15 minimum wage in our baseline model and a full utilization model
calibrated to match the same targets. Middle panel compares the effects of a $15 minimum wage in our baseline
to N̂Lt =

∑∞
τ=1

∑
i∈L(1 − δ)τ−1Xt−τΠ

u(ετ )vLt−τ , which holds the utilization schedule fixed at its BGP value.
Right panel does the same for $12.50 minimum wage.

a permanent idiosyncratic productivity ε. The full utilization model has neither of these features,

g = 0 and ε = 1. As shown in the left panel of Figure 2, the full utilization model has 100%

utilization of capital along a BGP whereas utilization in our baseline vintage model declines with

age. For both models the speed of adjustment is defined as the change in non-college employment

in the tth month following the introduction of the minimum wage as a percentage of the long-run

change in non-college employment achieved in the new BGP.

Figure 7’s left panel shows that the transition in the full utilization model is slow: in the first

30 months after the introduction of a $15 minimum wage, employment of non-college workers has

adjusted only 25% of the way to the new BGP level and by 60 months employment adjusts by only

47%. Here, the only operative margin of adjustment is to wait for existing capital to depreciate

before replacing workers. Indeed, since workers separate at 30% per year and capital depreciates

at only 15% per year, the firm actively hires 15% each type of worker that was working on the

machines in the original BGP—no matter how low the skill level—to keep the old machines running

at full capacity. Hence, the desire of the firm to keep all the old capital active is saving the jobs of

the low-skill workers from being eliminated in the short run. At the same time, the firm is building

new types of capital with a much lower fraction of low-skill types. In short, the full utilization

model has only these type of capital dynamics to adjust the speed of transition in the short run.

The left panel also shows that our baseline model with a vintage structure generates a much

faster transition in response to a large minimum wage change: in the first 30 months employment
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adjusts by 66% and by 60 months it adjusts by 89%. One reason for this faster transition is that,

even in the initial BGP, the vintage model, has endogenous obsolescence of capital in addition to

standard capital depreciation. To see how, compare the left panel of Figure 2 with full utilization

to the right panel with vintage capital in which all the capital with productivity Aε to the left of

the cutoff level is never utilized again. So it is as if capital disappears from use at rate equal to the

sum of the depreciation rate and the obsolescence rate whereas in the full utilization model capital

disappears from use only at the rate of depreciation. So, even if the obsolescence rate stays fixed

after the introduction of the minimum wage, capital turns over much faster in the vintage model

than the full utilization model due to this steady state obsolescence effect in the original BGP.

The second, more subtle, reason why transition is faster in the model with vintage capital is

that utilization rates endogenously respond to the minimum wage change. Specifically, they cause

the cutoff ε in the right panel of Figure 2 to shift to the right because the binding minimum wage

on some low-skilled workers makes marginal capital less attractive and, hence, more capital is idled.

Since this force is bigger the larger is the minimum wage, it leads large minimum wages to have

faster transitions than small minimum wages.

We can quantify the sizes of the steady state obsolescence effect and the endogenous utilization

effect as follows. To do so, recall that Πu(ε) =
∫∞
ε π(ε)dε and εt−τ,t is the cutoff ε for capital made

in period t− τ to be utilized in t, and write the total movements in type i labor at t as

Nit =
∑∞

τ=1
(1− δ)τ−1Xt−τΠ

u(εt−τ,t)vit−τ , (33)

Hence, this labor is the sum of its use in current and all past vintages of capital. The type-i labor

allocated to capital made in t − τ is the product of the capital of that vintage remaining in t,

(1− δ)τ−1Xt−τ , the share of that vintage that is utilized, Πu(εt−τ,t), and the type-i labor intensity

of that vintage, vit−τ . Hence, employment changes as any of these pieces change.

Next, let the fixed partial utilization employment of type i, N̂it, be the analog of (33) but with

utilization rates held fixed at their BGP levels, so N̂it =
∑∞

τ=1(1− δ)τ−1Xt−τΠ
u(ετ )vit−τ , where ετ

is the utilization threshold along the BGP for capital installed τ periods ago. Thus, N̂it moves only

because of capital accumulation dynamics, but in a world where there is fixed partial utilization. For

each labor type i we can decompose the total movement in its labor as Nit = N̂it + [Nit − N̂it] and

define the associated aggregate of non-college labor by summing over the types i without college

by letting NLt =
∑

i∈LNit and N̂Lt =
∑

i∈L N̂it. Then we can decompose the total movements in

non-college labor into the sum of those movements with (counterfactually) fixed partial utilization
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and the rest—which is due to endogenous utilization as

NLt︸︷︷︸
Total Movement

= N̂Lt︸︷︷︸
Fixed Partial Utilization

+ NLt − N̂Lt︸ ︷︷ ︸
Endogenous Utilization

(34)

Figure 7’s middle panel adds the path of non-college employment under fixed partial utilization to

the left panel. Clearly, the fixed partial utilization model generates the bulk of the speeding up in

the transition. For example, of the 41 percentage point increase in the speed of transition at 30

months shown in the left panel between the baseline model and the full utilization model (66% vs.

25%), the fixed partial utilization component generates about 60% of it ((50%-25%)/41%) and the

endogenous utilization component generates the rest. Moreover, the difference between the fixed

partial utilization counterfactual and the full utilization model, which is due to the capital utilization

dynamics, converges to zero along the transition path because capital utilization eventually reverts

to its initial value—see Lemma 3. Hence, the obsolescence effect on past vintages of capital present

in the initial BGP of the benchmark model accounts for the bulk of the increased transition speed.

Comparing Figure 7’s middle and right panels shows that the endogenous utilization component

discussed above is bigger for larger minimum wage changes: after 60 months, the difference between

the two transition paths is 6 percentage points with a $12.50 minimum wage (right panel) but 11

percentage points with a $15 minimum wage (middle panel). This result is intuitive: the larger is

the minimum wage, the greater is the endogenous force to idle more of the marginal capital stock.

Figure 8 illustrates these margins of adjustment along the transition path by plotting the distri-

bution of capital types at various points in time following the introduction of a $15 minimum wage.

Indexing a unit of capital by its detrended aggregate non-college labor intensity ṽL =
∑

i∈IL ṽi, we

calculate the total amount of capital of each type, the gray bars, and the total amount of capital

of that type that is actually utilized, the blue bars. In the initial BGP, all capital has the same

detrended labor intensity ṽ∗L, and firms utilize roughly 68% of the various vintages that make up

that capital. Once a large minimum wage is introduced, firms begin to invest in capital with lower

detrended non-college labor intensity than in the initial BGP. Now remember that the initial BGP

has the fixed partial utilization pattern present in the right-most panel of Figure 2. As Figure 7’s

middle panel shows, by itself this partial utilization pattern, even when held fixed at the initial

BGP levels, leads to faster transitions than the full utilization model.

We now turn to how the endogenous response of utilization rates to the minimum wage speeds

up the transition even more than would occur with the fixed partial utilization present in the initial

BGP of the vintage capital model. To see how suppose that the capital utilization schedule was
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Figure 8: Distribution of Capital Types Along the Transition, $15 Minimum Wage

Notes: The gray portion of each histogram represents the share of capital in the corresponding range of detrended
non-college labor intensities ṽL =

∑
i∈L ṽi. The blue portion of each histogram represents the share of capital

that is utilized in production. The different panels represent the response at different time horizons after the
introduction of the minimum wage.

held constant at the schedule in the initial BGP so that the blue bars were a constant share of

the gray bars for all capital types. Given our depreciation rate of 15%, it takes more than ten

years for this old capital to fully depreciate. The employment dynamics induced by this capital

investment channel is the capital accumulation dynamics we were discussing earlier. To see the

size of the endogenous utilization dynamics compare the 67.4% utilization rate in the initial BGP

with utilization rates in month 24, namely 60.5% for old capital and 81.7% for new capital. These

differences are the reason that the endogenous utilization margin speeds up the transition.

5.3 Heterogeneous Employment and Income Responses

To understand the implications of the slow dynamics of aggregate employment and labor income,

Figure 9’s top left panel plots the employment rates nit for a low productivity non-college worker

earning $7.50 and a medium productivity one earning $12 in response to a $15 minimum wage. On

impact, the employment of both worker types remains constant. Over time, though, firms substitute

away from low-productivity workers, leading to a prolonged decrease in their employment, which

takes many years to complete. By contrast, firms substitute towards medium-productivity workers,
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Figure 9: Individual Employment and Labor Income Dynamics to $15 Minimum Wage
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Notes: The top panels show the transition dynamics for employment and labor income for two non-college worker
types in response to a $15 minimum wage.The bottom panels show the change in the present value of labor income
for all non-college worker types under our baseline model. Full Dynamics refers to the present value of income
computed under the transition path in our baseline model. Short Run Only computes the present value assuming
that labor income gains during the first two years persists over time (bottom left). Long Run Only computes the
present value assuming that labor income gains in the new steady state persist over time (bottom right).

for whom the monopsony distortion is reduced, but again this adjustment process is slow.15

Figure 9’s top right panel plots these workers’ labor incomes. Since the employment rate of

workers does not change on impact, with a $15 minimum wage the labor income of workers initially

earning $12 increases by 25%. Over time, firms slowly increase the demand for these workers, so

their labor income eventually increases by about 40% in the long run. Hence, the slow employment

dynamics delay the long-run benefits of the minimum wage for these workers. By contrast, the slow

employment dynamics delay the long-term costs of the minimum wage for workers initially earning

$7.50. On impact, the $15 minimum wage doubles their labor income because it doubles their wages,

and firms have not yet reduced their employment. Over time, though, firms slowly substitute away

from these workers which reduces both their employment and their labor income. Eventually, the

income of these workers falls significantly relative to that in the initial BGP.
15In the early stages of the transition, the employment of medium-productivity workers falls slightly before rising.

This decline results from firms lowering the utilization rate of their existing capital before they start purchasing new
capital. Additionally, the employment declines for lower-productivity workers are faster than the employment increases
for higher-productivity workers which explains why aggregate non-college employment responds nonmonotonically to
a $12 minimum wage, as shown in the red dashed line of the left panel of Figure 6.
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A full evaluation of the policy must then integrate both short-run and long-run effects. The blue

line in the bottom panels of Figure 9 plots the percentage increase in the present value of labor

income along the transition relative to its present value in the initial BGP for each non-college

worker type (as measured by their initial wage). The present value of income (weakly) increases for

all non-college workers, and proportionately more for the lowest-wage ones. The bottom left panel

shows how this present value would change if we assumed that the average change in labor income

over the first two years after the introduction of the new minimum lasted forever. We refer to this as

the Short Run Only counterfactual. Clearly, for low-wage workers, this naive static analysis greatly

overstates the gain from the minimum wage. For example, for workers initially earning $7.50 an

hour, it would imply an increase in the present value of labor income by 80%, which is double the

true gain accounting for the transition.

The bottom right panel shows how this present value would change if we assumed that on

impact the economy immediately reached the new BGP. We refer to this as the Long Run Only

counterfactual. For workers initially earning $7.50 an hour, this naive long-run analysis would

predict that they experience a decrease in the present value of earnings of over 60%, whereas the

true gains calculated accounting for the transition are positive and over 40%. The extent to which

the Short Run Only and Long Run Only counterfactuals differ from a model accounting for the

actual transition path is much larger for lower productivity workers. The reason for this is that

workers experience both larger short run gains and larger long run losses in response to a $15

minimum wage.

These calculations highlight the limitations of two common approaches in the literature. The

first one is to extrapolate empirical measures of the impact of a change in minimum wage estimated

over the first couple of years following this change to much longer time horizons, presuming that

what happens during such a short-run period is informative about what happens from then on. The

second one is to use a long-run framework that ignores an economy’s transition to assess the dynamic

impact of a minimum wage change. For example, imagine that we eliminated putty-clay and search

frictions and all other sources of dynamics in our model so that the economy immediately reached

the new BGP. The first approach would give the same predictions as the naive static analysis as the

Short Run Only counterfactual while the second approach would give the same predictions as the

Long Run Only counterfactual. Neither of these common approaches would be close to measuring

the correct present value of the change as calculated along the transition for lower wage workers.
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Figure 10: Sensitivity Analysis for $15 Minimum Wage
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Notes: Transition paths of aggregate non-college employment, expressed as percentage of the total change in the
new BGP. Baseline corresponds to the model shown in Figure 6. Higher ω corresponds to a degree of monopsony
power of ω−1 = 1/6 that produces an 85% markdown. Higher ϕ corresponds to a long-run elasticity of substitution
within education groups of ϕ = 4.5. Lower σε corresponds to a standard deviation of idiosyncratic capital produc-
tivity of σε = 0.01 that generates a steady-state capacity utilization rate of 97%. Higher δ sets the depreciation
rate to δ = 20% annually. Lower g corresponds to a trend growth rate g of 0.01% annually. Higher σ sets the
job-destruction rate to σ = 3.5% monthly. Higher κ increases the baseline vacancy-posting cost κ0 by 2.5 times,
which roughly doubles the average hiring costs κi/λf (θi) to 125% of average monthly wage.

5.4 Sensitivity Analysis and Relationship to Empirical Literature

We now examine the sensitivity of our results to alternative parameterizations and discuss their

relationship to the empirical literature.

Sensitivity Analysis. Figure 10 illustrates how various features of our model impact the speed at

which aggregate non-college employment responds to the minimum wage. The left panel focuses on

the two parameters that are key in determining the long-run effect of the minimum wage: the degree

of firm monopsony power, governed by ω, and the long-run elasticity of labor-labor substitution,

governed by ϕ. When the degree of monopsony power is reduced to ω = 6, which implies an average

markdown of 0.85, the minimum wage leads to a larger decline in employment in the long run and

a slower transition to it. Similarly, increasing the long-run elasticity of labor-labor substitution to

ϕ = 4.5 leads to a larger decline in employment and a slightly slower transition.16

The middle panel of Figure 10 illustrates the sensitivity of the employment response with

respect to the parameters that govern the capital adjustment process. For the capital accumulation

dynamics, consider an increase in the capital depreciation rate to δ = 20% per year. Since the firm’s

installed capital depreciates more quickly, employment also adjusts more quickly to the minimum

wage as firms more quickly purchase new capital with different labor intensities. For the capital
16The sensitivity analysis for the level of non-college employment in the new BGP can be found in the Online

Appendix.
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utilization dynamics, consider a decrease in the dispersion of idiosyncratic capital productivity to

σε = 0.01, which implies that the average utilization rate of capital is 97% as in the middle panel of

Figure 2. As very few units of capital are near the utilization threshold, changes in utilization are

small in response to changes in the minimum wage, which slows down the transition of employment.

Similarly, if we instead set g = 0.01% annually, then fewer units of capital are near the utilization

threshold and the transition is again slower.

The right panel of Figure 10 shows the sensitivity of our main results to two parameters gov-

erning the degree of search frictions: the vacancy-posting cost κi and the job destruction rate σ.

We increase the baseline vacancy-posting cost κ0 to approximately double the average hiring costs

κi/λf (θi) and increase the job separation rate to σ = 3.5% monthly. As the figure shows, these

parameters have a relatively minor effect on the speed of transition of employment, because most of

the slow adjustment implied by our model is due to our putty-clay technology not search frictions.

Comparison with the Empirical Literature. Our model’s slow employment dynamics is

consistent with the large empirical literature documenting the effects of the minimum wage.17

Neumark and Shirley (2022) recently reviewed this vast literature by conducting a meta-analysis of

109 published studies based on cross-state variation in the minimum wage in the United States and

calculating the implied short-run elasticity of the employment response. All of the papers reviewed

focus on the employment effects i) stemming from small minimum wage changes (increases of $3

or less); ii) analyzed over short time horizons (12 to 24 months after the policy takes place); and

iii) for initially lower-earning workers, such as teenagers and young adults. Neumark and Shirley

(2022) find that roughly 80% of the studies imply zero to small short-run employment declines

over the first two years following a minimum wage increase. Our model’s response to small- and

medium-sized minimum wage increases in Figure 6 are consistent with these findings.

Directly related to our focus on the transition dynamics in response to policies, Clemens and

Strain (2021) provides evidence on how employment responds to minimum wage increases of differ-

ent sizes at different horizons. These authors estimate the employment effects of small changes (less

than $2.50) and larger changes (more than $2.50) in the minimum wage in both the short run (1

to 3 years) and the medium run (4 to 6 years). They find that small minimum wage changes have

insignificant effects on employment in the short and medium run, consistent with our small mini-

mum wage experiment in the left panel of Figure 6. However, Clemens and Strain (2021) also finds
17We focus our discussion on work examining state or national changes in the minimum wage. Studies of changes

in the minimum wage at the city level tend to find larger short-run declines in employment as households and firms
can easily substitute their consumption and production across neighboring cities where the minimum wage did not
change. Such margins of adjustment are outside the scope of our model.
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Figure 11: Employment and Labor Income Dynamics in Response to EITC
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Notes: Transition paths following the introduction of the EITC. Left panel plots the path of aggregate non-college
employment, expressed relative to initial BGP. Middle panel plots detrended flow labor income for two non-
college worker types. Right panel plots the present value of labor income for select non-college worker types. Full
Dynamics, Short Run Only, and Long Run Only are defined similarly as in Figure 9.

that larger changes in the minimum wage have statistically significant negative employment effects

after 4 to 6 years. These results are in line with the implications of our model for the medium- and

large-sized minimum wage changes shown in Figure 6. We take it as a strength of our framework

that we can match these dynamic employment responses to increases in the minimum wage.18

Finally, a separate literature also provides evidence that firms slowly adjust their input mix

in response to minimum wage increases, in line with the predictions of our model. For example,

in response to a large and persistent minimum wage increase in Hungary, Lindner and Harasz-

tosi (2019) documents that firms responded by substituting away from labor towards capital. Re-

latedly, Clemens, Kahn and Meer (2021) provide evidence that U.S. firms substitute away from

low-productivity workers towards higher-productivity ones in response to minimum wage increases.

5.5 Dynamics Effects of the EITC

We now show that the mechanisms governing the dynamic effects of the EITC are similar to those

of the minimum wage. As with the minimum wage, we assume that the economy starts along a

BGP without any policies and that the EITC is introduced starting in period 0, after which agents

have perfect foresight of the transition path to the new BGP. We study an EITC that is budget-

equivalent to a $15 minimum wage in the long run—namely, financed though a linear tax on profits

such that the revenue from the tax equals the loss in profits associated with a $15 minimum.
18Similarly, Cengiz et al. (2019) estimate both the short- and the long-run effects of small minimum wage increases—

averaging across all the increases they study, the minimum wage was raised by about 10% or about $0.75 in current
dollars. These authors find that employment effects are small and positive for lower wage workers in the few years after
a small minimum wage increase, and persist over a seven-year horizon. Again, our model also predicts these findings
for small minimum wage changes on low wage workers. However, as our model shows, one should not extrapolate
these findings to larger minimum wage changes.
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The left panel of Figure 11 compares the transition path of aggregate non-college employment

following the introduction of the EITC with that following a $15 minimum wage. Under a minimum

wage, firms pay the marginal cost of the policy and hence substitute away from the affected workers.

Under the EITC, the government pays the marginal cost of it, thereby subsidizing the wages of

affected workers, stimulating their labor supply, and lowering the pre-transfer wage that firms need

to pay to hire them. These lower wages and reduced monopsony distortion induce firms to substitute

toward the subsidized workers. Thus, a budget-equivalent EITC expansion leads to better medium-

and long-run employment outcomes for non-college workers than does a $15 minimum wage.

The middle panel of Figure 11 shows the implications of these employment dynamics for the

labor income of a low-productivity worker earning $7.50 and a medium-productivity worker earning

$12 before the EITC. On impact, the EITC raises the income of both workers. Over time, firms

substitute toward them and their income continues to grow. Hence, the gradual employment dy-

namics slows down the long-run benefits of the policy on workers’ labor income. Proportionally,

income gains are larger for the low-productivity worker. The right panel of Figure 11 illustrates

how the present value of labor income increases for all workers affected by the EITC, especially

for the lower-productivity ones primarily targeted by the policy. For workers initially earning less

than $13, comparing the new BGP to the old one overstates the true gain in labor income, because

such a comparison ignores the slow dynamics of employment. For higher-productivity workers, a

BGP comparison implies a decline in income altogether, because these workers in the phase-out

region of the EITC experience an increase in their monopsony distortion in the new BGP, which

lowers their employment in the long run. Hence, for this policy as well, taking into account the

entire transition path of the economy is critical to accurately gauging the true effects of an EITC

policy on the present value of income.

6 Conclusion
When an economy’s response to a sizable policy change is slow, any comprehensive assessment of

the policy’s benefits or costs must take the full dynamics of adjustment into account. In this paper,

we provide a tractable dynamic general equilibrium model that captures the key forces required

for such an assessment. We show that using our novel framework to evaluate policies leads to

substantially different conclusions about their aggregate and distributional effects than standard

static-only or long-run-only approaches would imply.
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Online Appendix

A Model Without Labor Market Policies
We start by studying the model without any labor market policies. This analysis underlies the

results in Sections 1 and 2 of the main text. In Appendix B, we introduce labor market policies

and use this BGP as the initial condition.

A.1 Households

From the main text, the household’s utility maximization problem is

max
cit,sijt,nijt+1

∑∞

t=0
βtUt(cit, nit, sit)

s.t. nijt+1 = (1− σ)nijt + λw(θijt)sijt (×βt+1V̂ijt+1)

s.t.
∑∞

t=0
Q0,tcit = ζiP+ Ii +

∑∞

t=1
Q0,t

∑
j
λw(θijt−1)sijt−1Wijt. (×Γ) (A1)

Here, the variables in parentheses denote the (often rescaled) Lagrange multiplier associated with

the constraint. The first-order condition for consumption cit is βtUcit = ΓQ0,t. Taking ratios of

this equation across adjacent time periods gives Qt,t+1 = β Ucit+1

Ucit
. The first-order condition for

employment nijt+1 is

βt+1Unit+1

(
nijt+1

nit+1

) 1
ω

− βt+1V̂ijt+1 + βt+2(1− σ)V̂ijt+2 = 0,

which implies

V̂ijt+1 = Unit+1

(
nijt+1

nit+1

) 1
ω

+ β(1− σ)V̂ijt+2.

which uses the fact that ∂nit+1

∂nijt+1
=
(
nijt+1

nit+1

) 1
ω . Note that V̂ijt+1 is in units of utility at t+ 1. Going

forward, it will be useful to put this object in consumption units by dividing by the marginal utility

of consumption in period t+ 1:

Vijt+1 ≡
V̂ijt+1

Ucit+1
=
Unit+1

Ucit+1

(
nijt+1

nit+1

) 1
ω

+ β
Ucit+2

Ucit+2
(1− σ)

V̂ijt+2

Ucit+1

=
Unit+1

Ucit+1

(
nijt+1

nit+1

) 1
ω

+Qt+1,t+2(1− σ)Vijt+2, (A2)

where the second line uses the fact that Qt+1,t+2 = β Ucit+2

Ucit+1
. This equation defines Vijt+1 as the

present value of marginal disutilities of work for workers that are hired in period t and begin

working in period t+ 1, in terms of their consumption units in period t+ 1.
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The first-order condition for search effort sit is

βtUsit + βt+1V̂ijt+1λw(θijt) + ΓQ0,t+1λw(θijt)Wijt+1 = 0

=⇒ − Usit = λw(θijt)βUcit+1

(
V̂ijt+1

Ucit+1
+Wijt+1

)

=⇒ − Usit

Ucit
= λw(θijt)Qt,t+1 [Vit+1 +Wijt+1] , (A3)

where the second line uses the fact that ΓQ0,t+1 = Ucit+1 and the third line uses the fact that

Qt,t+1 = β Ucit+1

Ucit
. Recall from the main text that we will write the participation constraint as

λw(θijt)Qt,t+1(Wijt+1 + Vijt+1) ≥ Wit ≡ λw(θit)Qt,t+1(Wit+1 + Vit+1). (A4)

A.2 Firms

We now turn to the firm’s profit maximization problem, which is the main challenge of solving the

model. We abstract from initial conditions because we use these results to derive the limiting BGP.

We also ignore the non-negativity constraint on vacancy posting aijt ≥ 0 because that constraint

is not binding along the BGP. We begin by showing how to group collect the Lagrange multipliers

on the participation constraints in terms of the auxiliary variable Mijt defined in the main text.

This allows us to specify the full profit maximization problem of the firm. We then derive the first-

order conditions of the profit maximization problem. Finally, we summarize the resulting conditions

which characterize the solution to the firm’s problem.

Grouping Multipliers on the Participation Constraint. We collect across time the corre-
sponding terms of the participation constraints of each period, in a way that has become standard
in the dynamic contracting literature (Marcet and Marimon 2019), so as to isolate the impact of
additional hires of a type-i family by firm j in t on the disutility of work of all members of the
family hired by the firm in future periods. To do this, we attach the (scaled) Lagrange multiplier
Q0,t+1µiγijt+1 to the time-t participation constraint (5) from the main text. It is instructive to write
out how the first few period’s participation constraints enter firm j’s expected profit maximization
problem:

Q0,1γij1

[Uni1

Uci1

(
nij1
ni1

) 1
ω

+Q1,2(1−σ)
Uni2

Uci2

(
nij2
ni2

) 1
ω

+Q1,3(1−σ)2
Uni3

Uci3

(
nij3
ni3

) 1
ω

+. . .+Wij1−
Wi0

Q0,1λw(θij0)

]
Q0,2γij2

[Uni1

Uci1

(
nij1
ni1

) 1
ω

+Q1,2(1−σ)
Uni2

Uci2

(
nij2
ni2

) 1
ω

+Q2,3(1−σ)
Uni3

Uci3

(
nij3
ni3

) 1
ω

+. . .+Wij2−
Wi1

Q1,2λw(θij1)

]
Q0,3γij3

[Uni1

Uci1

(
nij1
ni1

) 1
ω

+Q1,2(1−σ)
Uni2

Uci2

(
nij2
ni2

) 1
ω

+Q2,3(1−σ)
Uni3

Uci3

(
nij3
ni3

) 1
ω

+. . .+Wij3−
Wi2

Q2,3λw(θij2)

]
.
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By collecting the multipliers associated with the terms Unit
Ucit

(
nijt

nit

) 1
ω for some t and noting that

Q0,τQτ,t = Q0,t for τ < t, it is easy to see that all such terms are summarized by the auxiliary

variable Mijt+1 = (1− σ)Mijt + γijt+1 as in Marcet and Marimon (2019). Hence, the contributions

of the participation constraint to the Lagrangian can be reduced to
∞∑
t=0

Q0,t+1µiMijt+1
Unit+1

Ucit+1

(
nijt+1

nit+1

) 1
ω

+

∞∑
t=0

Q0,t+1µiγijt+1

[
Wijt+1 −

Wit

Qt,t+1λw(θijt)

]
.

Profit-Maximization Problem. Using these results, we can write the firm’s problem as choos-
ing utilization ujt(v, ε, At−τ ), the labor allocation Nijt(v,At−τ , ε), total employment Nijt, vacancy
posting aijt, market tightness θijt, present value of wage offers Wijt+1, investment Xjt(v), and
capital Kjt+τ+1(v,At), in order to maximize the expected present value of profits:

∑
t

Q0,t

(∑
τ

∫
v,ε

ujt(v,At−τ , ε)At−τεf(v)Kjt(v,At−τ )π(ε)dεdv −
∑
i

µi(λf (θijt−1)aijt−1Wijt + κitaijt)

−
∫
Xjt(v)dv

)
+

∞∑
t=0

Q0,t+1µiMijt+1
Unit+1

Ucit+1

(
nijt+1

nit+1

) 1
ω

+

∞∑
t=0

Q0,t+1µiγijt+1

[
Wijt+1 −

Wit

Qt,t+1λw(θijt)

]
such that ujt(v,At−τ , ε) ≥ 0 (×Q0,tλ

L
jt(v,At−τ , ε))

ujt(v,At−τ , ε) ≤ 1 (×Q0,tλ
U
jt(v, ε, At−τ ))

ujt(v,At−τ , ε)viKjt(v,At−τ )π(ε) ≤ Nijt(v,At−τ , ε) for all i (×Q0,tλijt(v,At−τ , ε))∑
τ

∫
v,ε

Nijt(v,At−τ , ε)dεdv ≤ µinijt for all i (×Q0,tχijt)

µinijt+1 ≤ (1− σ)µinijt + λf (θijt)µiaijt for all i (×Q0,t+1νijt+1)

Kjt+τ+1(v,At) = (1− δ)τXjt(v) (×Q0,t+τ+1qjt,t+τ+1(v))

Xjt(v) ≥ 0 (×Q0,tµjt(v)),

with the side conditions that Mijt+1 = (1 − σ)Mijt + γijt+1 and Wit
Qt,t+1λw(θit)

= Wit+1 + Vit+1. As

before, variables in parenthesis denote scaled Lagrange multipliers on the associated constraint. In

this problem, we have explicitly written the measure of workers as Nijt = µinijt, where nijt is the

share of family i working at firm j. We make this substitution because the participation constraint

naturally depends on per-capital nijt rather than the total measure Nijt.

We now proceed to take the first-order conditions of this problem. We group these conditions

into three blocks: the utilization block, the hiring block, and the investment block.
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Utilization Block. The first-order condition for labor assignment Nijt(v,At−τ , ε) is simply

λijt(v,At−τ , ε) = χijt. The first-order condition for utilization ujt(v,At−τ , ε) is is given by

At−τεf(v)Kjt(v,At−τ )π(ε)−
∑

i
λijt(v,At−τ , ε)viKjt(v,At−τ )π(ε) = λUijt(v,At−τ , ε)−λLijt(v,At−τ , ε).

Substituting the first-order condition for labor assignment from above, namely λijt(v,At−τ , ε) =

χijt, we get

At−τεf(v)−
∑

i
χijtvi =

λUijt(v,At−τ , ε)− λLijt(v,At−τ , ε)

Kjt(v,At−τ )π(ε)
. (A5)

If At−τεf(v)−
∑

i χijtvi > 0 or, equivalently, ε >
∑

i χijtvi
At−τf(v)

≡ ε(v,At−τ ;χjt) for χjt = (χ1jt, . . . , χIjt),

then (A5) implies that λUijt(v,At−τ , ε) − λLijt(v,At−τ , ε) > 0 and so ujt(v,At−τ , ε) = 1 by comple-

mentary slackness. If At−τεf(v)−
∑

i χijtvi < 0 or, equivalently, ε <
∑

i χijtvi
At−τf(v)

= ε(v,At−τ ;χjt), then

λUijt(v,At−τ , ε)−λLijt(v,At−τ , ε) < 0 by (A5), which implies that ujt(v,At−τ , ε) = 0 by complemen-

tary slackness. So, the utilization decision has the form: fully utilize if ε > ε(v,At−τ ;χjt) and do

not utilize at all if ε < ε(v,At−τ ;χjt).19

Note that the solution to the static utilization problem (12) from the main text coincides with

this solution from the dynamic problem if we set the static multipliers χ̂ijt = χijt.

Hiring Block. The first-order condition for employment nijt+1 is

νijt+1 = χijt+1 +Mijt+1
Unit+1

Ucit+1

1

ω

(
nijt+1

nit+1

) 1
ω
−1 1

nit+1
+Qt+1,t+2(1− σ)νijt+2, (A6)

which uses the fact that ∂
∂nijt+1

(
nijt+1

nit+1

) 1
ω
= 1

ω

(
nijt+1

nit+1

) 1
ω
−1

1
nit+1

. This equation identifies the mul-

tiplier νijt+1 as the present value of a marginal worker to the firm, taking into account both their

marginal product χijt+1 and the monopsony distortion Mijt+1
unit+1

ucit+1

1
ω

(
nijt+1

nit+1

) 1
ω
−1

1
nit+1

.

The first-order condition for vacancy posting aijt is

−Q0,tκit −Q0,t+1λf (θijt)Wijt+1 +Q0,t+1λf (θijt)νijt+1 = 0

=⇒ κi
λf (θijt)

= Qt,t+1 (νijt+1 −Wijt+1) . (A7)

19In the knife-edge case where At−τεf(v)−
∑

i χijtvi = 0, the firm is indifferent over any ujt(v,At−τ , ε) ∈ [0, 1].
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The first-order condition for market tightness θijt is

−Q0,t+1λ
′
f (θijt)aijtWijt+1 +Q0,t+1νijt+1λ

′
f (θijt)aijt +Q0,t+1γijt+1

Wit

Qt,t+1λw(θijt)2
λ′w(θijt) = 0

=⇒ Wijt+1 = νijt+1 +
γijt+1

aijt

Wit

Qt,t+1λw(θijt)2
λ′w(θijt)

λ′f (θijt)
. (A8)

The first-order condition for wages Wijt+1 is

γijt+1 = λf (θijt)aijt, (A9)

Plugging in this expression for γijt+1 into the first-order condition for market tightness (A8) gives

Wijt+1 = νijt+1 +
λf (θijt)

λw(θijt)

Wit

Qt,t+1λw(θijt)

λ′w(θijt)

λ′f (θijt)

= νijt+1 +
λf (θijt)

λw(θijt)
(Wijt+1 + Vijt+1)

λ′w(θijt)

λ′f (θijt)

= νijt+1 −
1− η

η
(Wijt+1 + Vijt+1),

where in the second line we used Wit
Qt,t+1λw(θijt)

= Wijt+1 + Vijt+1 and in the third line we used
λf (θijt)
λw(θijt)

λ′
w(θijt)

λ′
f (θijt)

= −1−η
η . Solving for the present value of wages Wijt+1 yields

Wijt+1 = ηνijt+1 − (1− η)Vit+1, (A10)

which is the expression in the main text.

Investment Block. We now characterize the investment stage and, in the process, prove Propo-

sition 2 from the main text. First, consider capital installed in period t— and therefore with vintage

productivity At — in use in period t+ τ , Kjt+τ (v,At). The first-order condition for this variable is

Q0,t+τ

∫
ujt+τ (v,At, ε)Atεf(v)π(ε)dε

−Q0,t+τ

∑
i
vi

∫
λijt+τ (v,At, ε)ujt+τ (v, ε, A)π(ε)dε−Q0,t+τqjt,t+τ (v) = 0

=⇒ qjt,t+τ (v) =

∫
ε(v,At;χjt+τ )

(
Atεf(v)−

∑
i

χijt+τvi

)
π(ε)dε, (A11)
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where the second line uses the facts that λijt+τ (v,At, ε) = χijt+τ and that ujt(v,A, ε) = 1 for

ε ≥ ε(v,At;χjt+τ ) and 0 otherwise. The first-order condition for investment Xjt(v) is

µjt(v) = 1−
∞∑
τ=1

Qt,t+τ (1− δ)τ−1qjt,t+τ (v)

=⇒ µjt(v) = 1−
∞∑
τ=1

Qt,t+τ (1− δ)τ−1

∫
ε(v,At;χjt+τ )

(
Atεf(v)−

∑
i

χijt+τvi

)
π(ε)dε, (A12)

where the second line uses the expression for qjt,t+τ (v) from (A11).

Optimal Capital Type. As in the main text, we use (A12) to show that there is unique type of capital

in which firms invest in period t. To do so, first note that since µjt(v) is a Lagrange multiplier, it

has a minimum value at zero. Furthermore, if the RHS of (A12) is single-peaked, then there is a

unique value of v — call it vjt — which achieves that minimum. Therefore, we have µjt(v) > 0

for all v ̸= vjt, which by complementary slackness implies that Xjt(v) = 0 for all vjt ̸= 0. For the

optimal type vjt, we have that (A12) holds with µjt(vjt) = 0. Hence, under the optimal choice of

capital type, the first-order condition for investment becomes

1 =

∞∑
τ=1

Qt,t+τ (1− δ)τ−1

∫
ε(v,At;χjt+τ )

(
Atεf(vjt)−

∑
i

χijt+τvijt

)
π(ε)dε.

Since this optimal type vjt is the minimizer of the RHS of (A12), it equivalently solves the

maximization problem

vjt = argmax
v

∞∑
τ=1

Qt,t+τ (1− δ)τ−1

∫
ε(v,At;χjt+τ )

(
Atεf(vjt)−

∑
i

χijt+τvijt

)
π(ε)dε.

The first-order condition for vijt in this problem is

0 =
∞∑
τ=1

Qt,t+τ (1− δ)τ−1

(
At
∂f(v)

∂vi

∫ ∞

ε(v,At;χjt+τ )
επ(ε)dε− χijt+τ

∫ ∞

ε(v,At;χjt+τ )
π(ε)dε

)

−
∞∑
τ=1

Qt,t+τ (1− δ)τ−1∂ε(v,At;χjt+τ )

∂vi
π(ε(v,At;χjt+τ ))

(
Atε(v,At;χjt+τ )f(v)−

∑
i

χijt+τvi

)
.

The top line is the derivatives holding fixed ε(v,At;χjt+τ ) and the second line is the derivatives with

respect to ε(v,At;χjt+τ ), using the fundamental theorem of calculus.20 However, each term in the

summand in this second line is zero at the optimum. To see this, plug in ε(v,At;χjt+τ ) =
∑

i χijt+τvi
Atf(v)

20That is,
∫ b

a
F ′(x)dx = F (b)− F (a) so ∂

∂a

∫ b

a
F ′′(a).

6



to see that the term becomes 0 for each future period τ . In the language of Gilchrist and Williams

(2000), the marginal unit of capital is earns zero quasi-rents in each period.
To summarize, the optimal investment policy is characterized by two conditions:

0 =

∞∑
τ=1

Qt,t+τ (1− δ)τ−1

(
Atfi(vt)

∫ ∞

ε(v,At;χjt+τ )

επ(ε)dε− χijt+τ

∫ ∞

ε(v,At;χjt+τ )

π(ε)dε

)
∀i (A13)

1 =

∞∑
τ=1

Qt,t+τ (1− δ)τ−1

∫
ε(v,At;χjt+τ )

(
Atεf(vjt)−

∑
i

χijt+τvijt

)
π(ε)dε, (A14)

where fi(vt) = ∂f(vjt)
∂vi

. The first equation is the first-order condition for the optimal type of capital

and the second equation is the first-order condition for investment in the optimal type.

Going forward, it will be useful to simplify notation. First, we let εt,t+τ = ε(v,At;χjt+τ ) denote

the utilization cutoff for capital installed in period t to be used in period t+τ . Second, following the

main text, we define Πu(εt,t+τ ) =
∫
εt,t+τ

π(ε)dε and Πp(εt,t+τ ) =
∫
εt,t+τ

επ(ε)dε. With this notation,

we can write (A13) and (A14) more compactly as

0 =
∞∑
τ=1

Qt,t+τ (1− δ)τ−1
(
Πp(εt,t+τ )Atfi(vt)−Πu(εt,t+τ )χijt+τ

)
1 =

∞∑
τ=1

Qt,t+τ (1− δ)τ−1

(
Πp(εt,t+τ )Atεf(vjt)−Πu(εt,t+τ )

∑
i

χijt+τvijt

)
.

Summary of Equilibrium Conditions. We now collect all of the equilibrium conditions of the

model, including the optimality conditions from the households and the firms. Since we study a

symmetric equilibrium, we drop the j notation for individual firms going forward.

Qt,t+1 = β
Ucit+1

Ucit
(A15)

Vit+1 =
Unit+1

Ucit+1
+Qt+1,t+2(1− σ)Vit+2 (A16)

−Usit

Ucit
= Qt,t+1λw(θit)(Wit+1 + Vit+1) (A17)∑∞

t=0
Q0,tcit = ζiP+ Ii +

∑∞

t=1
Q0,tλw(θit−1)sit−1Wit (A18)

εt,t+τ =

∑
i χit+τvit
Atf(vt)

(A19)

νit+1 = χit+1 +Mit+1
Unit+1

Ucit+1

1

ωnit+1
+Qt+1,t+2(1− σ)νit+2 (A20)

κit
λf (θit)

= Qt,t+1(νit+1 −Wit+1) (A21)

Wit+1 = ηνit+1 − (1− η)Vit+1 and γit+1 = λf (θit)ait (A22)
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nit+1 = (1− σ)nit + λf (θit)ait (A23)

Mit+1 = γit+1 + (1− σ)Mit (A24)

θit = ait/sit (A25)

1 =

∞∑
τ=1

Qt,t+τ (1− δ)τ−1

(
Πp(εt,t+τ )Atεf(vt)−Πu(εt,t+τ )

∑
i

χijt+τvit

)
(A26)

0 =
∞∑
τ=1

Qt,t+τ (1− δ)τ−1
(
Πp(εt,t+τ )Atfi(vt)−Πu(εt,t+τ )χijt+τ

)
(A27)

Yt =

∞∑
τ=1

Πp(εt−τ,t)At−τf(vt−τ )(1− δ)τ−1Xt−τ (A28)

Yt =
∑
i

µicit +Xt +
∑
i

µiκitait. (A29)

µinit =

∞∑
τ=1

Πu(εt−τ,t)vit−τ (1− δ)τ−1Xt−τ . (A30)

Equation (A28) simplifies the expression for aggregate output from the main text using our

results about optimal investment and the definition of Πp(εt−τ,t). In particular, aggregate output

equals output produced by each vintage of capital, Πp(εt−τ,t)At−τf(vt−τ ), times the amount of

capital of that vintage which is remaining, (1 − δ)τ−1Xt−τ . Equation (A29) is market clearing for

aggregate output. Finally, equation (A30) equates aggregate employment of type-i worker in period

t to the amount of that type of labor assigned to each vintage.

A.3 Detrending

Due to capital-embodied technological progress in vintage productivity At, the equilibrium allo-

cation is not stationary over time. In this subsection, we describe how to detrend the model into

stationary form, which will be useful for numerically solving the model. As in the main text, we

assume that κit = (1 + g)tκi so that vacancy-posting costs grow along with the economy.

A balanced growth path will have the following properties:

(i) The following variables grow along with the economy: cit,Wit+1, Vit+1, χit, νit, Yt, Xt. Let tildes

denote detrended variables, e.g. c̃it = cit/(1 + g)t.

(ii) The following variables shrink over time: vit. Let ṽit = vit(1 + g)t.

(iii) The following variables are stationary: sit, nit+1, ait, θit, γit+1,Mit+1, Qt,t+1.

We now go through each of the equilibrium conditions and replace the original non-stationary

variables with their stationary version.
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A.3.1 Household

Using our functional form for the utility function, namely

Ut(cit, sit, nit) = log
(
cit − (1 + g)tv(nit)− (1 + g)th(sit)

)
,

the ratio of date-0 output prices (A15) becomes

Qt,t+1 = β
cit − (1 + g)tv(nit)− (1 + g)th(sit)

cit+1 − (1 + g)t+1v(nit+1)− (1 + g)t+1h(sit+1)

= β
(1 + g)tc̃it − (1 + g)tv(nit)− (1 + g)th(sit)

(1 + g)t+1c̃it+1 − (1 + g)t+1v(nit+1)− (1 + g)t+1h(sit+1)

=
β

1 + g

c̃it − v(nit)− h(sit)

c̃it+1 − v(nit+1)− h(sit+1)
.

The equation defining the disutility of labor (A16) becomes

Ṽit+1(1 + g)t+1 = −(1 + g)t+1v′(nit+1) +Qt+1,t+2(1− σ)Ṽit+2(1 + g)t+2

=⇒ Ṽit+1 = −v′(nit+1) +Qt+1,t+2(1 + g)(1− σ)Ṽit+2.

The first-order condition for optimal search effort (A17) becomes

(1 + g)th′(sit) = Qt,t+1λw(θit)(1 + g)t+1
(
W̃it+1 + Ṽit+1

)
=⇒ h′(sit) = Qt,t+1(1 + g)λw(θit)

(
W̃it+1 + Ṽit+1

)
.

The budget constraint (A18) becomes

∞∑
t=0

Q0,t(1 + g)tc̃it = ζiP+ Ii +
∞∑
t=0

Q0,t+1(1 + g)t+1λw(θit)sitW̃it+1.

A.3.2 Firms

We go through the utilization block, the hiring block, and the investment block.

Utilization Block. The production stage is summarized by the expression for the productivity

threshold εt,t+τ =
∑

i χit+τvit/Atf(vt). Recalling that vit shrinks are rate g so that ṽit = (1+g)tvit,
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in detrended terms, the numerator of the threshold is

∑
i

χit+τvit =
∑
i

[
(1 + g)t+τ χit+τ

(1 + g)t+τ

] [
1

(1 + g)t
vit(1 + g)t

]
= (1 + g)τ

∑
i

χ̃it+τ ṽit.

Recalling that F (K,N1, . . . , NI) = KαG(N1, . . . , NI)
1−α and both F and G are CRS gives

f(v1, . . . , vI) = F (1,
N1

K
, . . . ,

NI

K
) = 1αG(

N1

K
, . . . ,

NI

K
)1−α = G(v1, . . . , vI)

1−α.

Since f(vt) = G(v)1−α, the denominator of the cutoff is

Atf(vt) = ((1 + g)1−α)tG(vt)
1−α = ((1 + g)1−α)tG(

ṽt
(1 + g)t

)1−α

= ((1 + g)1−α)t
[

1

(1 + g)t
G(ṽt)

]1−α

= f(ṽt),

where the first equality uses that At = ((1 + g)1−α)t and f(vt) = G(vt)
1−α, and the third equality

uses the fact that G(vt) is constant returns to scale. Putting these results about the numerator and

denominator together, we get

εt,t+τ = (1 + g)τ
∑

i χ̃it+τ ṽit
f(ṽt)

.

Hiring Block. The expression for the present value of a worker (A20) becomes

ν̃it+1(1 + g)t+1 = χ̃it+1(1 + g)t+1 +Mit+1v
′(nit+1)(1 + g)t+1 1

ωnit+1
+Qt+1,t+2(1− σ)ν̃it+2(1 + g)t+2

=⇒ ν̃it+1 = χ̃it+1 +Mit+1v
′(nit+1)

1

ωnit+1
+Qt+1,t+2(1 + g)(1− σ)ν̃it+2.

The first-order condition for optimal vacancy-posting (A21) becomes

κi(1 + g)t

λf (θit)
= Qt,t+1(1 + g)t+1

(
ν̃it+1 − W̃it+1

)
=⇒ κi

λf (θit)
= Qt,t+1(1 + g)

(
ν̃it+1 − W̃it+1

)
.

The-condition for wages (A22) becomes

W̃it+1(1 + g)t+1 = ην̃it+1(1 + g)t+1 − (1− η)Ṽit+1(1 + g)t+1 =⇒ W̃it+1 = ην̃it+1 − (1− η)Ṽit+1

and γit+1 = λf (θit)ait is already stationary. The evolution of employment (A23), the definition of

the quasi-multipliers (A24), and the definition of market tightness (A25) are already stationary.
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Investment Block. First, consider the condition that equates marginal cost with marginal

benefit of new capital, (A26). As argued with the productivity cutoff above, the terms with

Atf(vt) = f(ṽt), and the terms with
∑

i χit+τvit = (1 + g)τ
∑

i χ̃it+τ ṽit. Thus

1 =
∞∑
τ=1

Qt,t+τ (1− δ)τ−1

(
Πp(εt,t+τ )f(ṽt)−Πu(εt,t+τ )

∑
i

χ̃it+τ ṽit

)
.

Next consider the first-order condition for the optimal type of capital, (A27). Note that

fi(vt) =
∂

∂vi
f(vt) =

∂

∂vi
[G(vt)]

1−α

= (1− α)G(vt)
−αGi(vt)

= (1− α)G(
ṽt

(1 + g)t
)−αGi(

ṽt
(1 + g)t

)

= ((1 + g)α)t(1− α)G(ṽt)
−αGi(ṽt) = ((1 + g)α)tfi(ṽt),

where the fourth line uses the fact that G(vt) is homogenous of degree one (and therefore its

derivatives are homogenous of degree zero). Therefore, we have that the terms Atfi(vt) = ((1 +

g)1−α)t((1+g)α)tfi(ṽt) = (1+g)tfi(ṽt). Plugging these into the first-order condition for the optimal

type of capital (A27) gives

0 =
∞∑
τ=1

Qt,t+τ (1− δ)τ−1
(
Πp(εt,t+τ )(1 + g)tfi(ṽt)−Πu(εt,t+τ )(1 + g)t+τ χ̃it+τ

)
=⇒ 0 =

∞∑
τ=1

Qt,t+τ (1− δ)τ−1
(
Πp(εt,t+τ )fi(ṽt)−Πu(εt,t+τ )(1 + g)τ χ̃it+τ

)
.

A.3.3 Aggregate Conditions

We start with the definition of aggregate output (A28). As we argued above, the termsAt−τf(vt−τ ) =

f(ṽt−τ ). Using this result, the equation becomes

Ỹt(1 + g)t =
∞∑
τ=1

Πp(εt−τ,t)f(ṽt−τ )(1− δ)τ−1(1 + g)t−τ X̃t−τ

=⇒ Ỹt =

∞∑
τ=1

Πp(εt−τ,t)f(ṽt−τ )(1− δ)τ−1(1 + g)−τ X̃t−τ

=⇒ Ỹt =
∞∑
τ=1

Πp(εt−τ,t)f(ṽt−τ )

(
1− δ

1 + g

)τ−1 X̃t−τ

1 + g
.
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For aggregate employment (A30) , note that vit−τXt−τ = ṽit−τ

(1+g)t−τ X̃t−τ (1 + g)t−τ = ṽit−τ x̃t−τ

is already stationary. So we have

µinit =
∞∑
τ=1

Πu(εt−τ,t)ṽit−τ (1− δ)τ−1X̃t−τ .

Finally, the output market clearing condition (A29) is

Ỹt(1 + g)t=
∑
i

µic̃it(1 + g)t + X̃t(1 + g)t +
∑
i

µiκi(1 + g)tait =⇒ Ỹt =
∑
i

µic̃it + X̃t +
∑
i

µiκiait.

A.3.4 Summary of Detrended Equilibrium Conditions

We now collect all of these detrended equilibrium conditions. In our quantitative work, we compute

the transition paths by solving this large nonlinear system,

Qt,t+1 =
β

1 + g

c̃it − v(nit)− h(sit)

c̃it+1 − v(nit+1)− h(sit+1)
(A31)

Ṽit+1 = −v′(nit+1) +Qt+1,t+2(1 + g)(1− σ)Ṽit+2 (A32)

h′(sit) = Qt,t+1(1 + g)λw(θit)
(
W̃it+1 + Ṽit+1

)
(A33)

∞∑
t=0

Q0,t(1 + g)tc̃it = ζiP+ Ii +
∞∑
t=0

Q0,t+1(1 + g)t+1λw(θit)sitW̃it+1 (A34)

εt,t+τ = (1 + g)τ
∑

i χ̃it+τ ṽit
f(ṽt)

(A35)

ν̃it+1 = χ̃it+1 +Mit+1v
′(nit+1)

1

ωnit+1
+Qt+1,t+2(1 + g)(1− σ)ν̃it+2 (A36)

κi
λf (θit)

= Qt,t+1(1 + g)
(
ν̃it+1 − W̃it+1

)
(A37)

W̃it+1 = ην̃it+1 − (1− η)Ṽit+1 and γit+1 = λf (θit)ait (A38)

P =
∞∑
t=0

Q0,t(1 + g)t
[
Ỹt − X̃t −

∑
i

µi

(
κiait + λf (θit)aitQt,t+1(1 + g)W̃it+1

) ]
−
∑
i

µiIi (A39)

Mit+1 = (1− σ)Mit + γit+1 (A40)

1 =

∞∑
τ=1

Qt,t+τ (1− δ)τ−1

(
Πp(εt,t+τ )f(ṽt)−Πu(εt,t+τ )

∑
i

χ̃it+τ ṽit

)
(A41)

0 =

∞∑
τ=1

Qt,t+τ (1− δ)τ−1
(
Πp(εt,t+τ )fi(ṽt)−Πu(εt,t+τ )(1 + g)τ χ̃it+τ

)
(A42)

12



nit+1 = (1− σ)nit + λw(θit)sit (A43)

θit =
ait
sit

(A44)

Ỹt =

∞∑
τ=1

Πp(εt−τ,t)f(ṽt−τ )

(
1− δ

1 + g

)τ−1 X̃t−τ

1 + g
(A45)

µinit =
∞∑
τ=1

Πu(εt−τ,t)ṽit−τ (1− δ)τ−1X̃t−τ (A46)

Ỹt =
∑
i

µic̃it + X̃t +
∑
i

µiκiait. (A47)

A.4 Balanced Growth Path

The balanced growth path is simply the steady state of the detrended system. In this subsection, we

collect the conditions that define the BGP and then simplify them to prove Lemma 3 and Lemma

4 from the main text. We also derive the formula for the wage markdown (26) from the main text.

Summary of BGP Conditions. Collecting the summary of detrended equilibrium conditions

from above and imposing a steady state, we get the system

Qt,t+1 ≡ β̃ =
β

1 + g
(A48)

h′(si) =
β

1− β(1− σ)
λw(θi)

[
w̃i − v′(ni)

]
(A49)

∞∑
t=0

βtc̃i = ζiP+ Ii +
∞∑
t=0

βt+1λw(θi)siW̃i (A50)

ν̃i =
1

1− β(1− σ)

[
χ̃i −

1

ω
v′(ni)

]
(A51)

W̃i = ην̃i + (1− η)
v′(ni)

1− β(1− σ)
(A52)

κi
λf (θi)

= β(ν̃i − W̃i) (A53)

ετ = (1 + g)τ
∑

i χ̃iṽi
f(ṽ)

(A54)

0 = fi(v)
∞∑
τ=1

β̃τ (1− δ)τ−1Πp(ετ )− χ̃i

∞∑
τ=1

β̃τ (1− δ)τ−1(1 + g)τΠu(ετ ) (A55)

1 = f(ṽ)

∞∑
τ=1

β̃τ (1− δ)τ−1Πp(ετ )−
∞∑
τ=1

β̃τ (1− δ)τ−1Πu(ετ )
∑
i

χ̃iṽi (A56)
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Ỹ =

∞∑
τ=1

Πp(ετ )f(ṽ)

(
1− δ

1 + g

)τ−1 X̃

1 + g
(A57)

µini =

∞∑
τ=1

Πu(ετ )ṽi(1− δ)τ−1X̃ (A58)

Ỹ =
∑
i

µic̃i + X̃ +
∑
i

µiκiai (A59)

θi = ai/si (A60)

P =
Ỹ − X̃ −

∑
i µi (κiai + βσniWi)

1− β
−
∑
i

µiIi (A61)

σni = λw(θi)si. (A62)

Note that the BGP of the putty-clay model is not the same as the model with standard capital.

The reason is that the labor intensities v in the putty-clay model are chosen before the realization

of the capital quality shock ε in the putty-clay model, but after the realization of ε in the model

with standard capital. Therefore, firms in the standard model will implicitly assign more workers

to high-ε machines, which is not possible in the putty-clay model. If we allowed firms to choose the

labor intensities v after the realization of capital quality shocks ε in the putty-clay model, then we

would not have an active utilization margin, which is a key feature of our analysis.

Reduced System Characterizing the BGP. Under our preference specification, the labor

market equilibrium and investment decisions are separable from the consumption allocation. This

property allows us to significantly reduce the number of equations which characterize the BGP in

Lemma 8 below (a version of Lemma 3 from the main text). In Appendix B, we use this Lemma to

show that a combination of type-specific minimum wages and vacancy-posting subsidies can achieve

the competitive allocation (Proposition 6 from the main text).

Lemma 8. Along the balanced growth path, the labor allocations and wages are determined by the

following equations:

(i) optimal cut-off for idiosyncratic productivity of capital

ε1 = (1 + g)(1− α)m(ε1), (A63)
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where m(ε1) is defined by

m(ε1) =

∑∞
τ=1 β̃

τ (1− δ)τ−1Πp((1 + g)τ−1ε1)∑∞
τ=1 β̃

τ (1− δ)τ−1(1 + g)τΠu((1 + g)τ−1ε1)
; (A64)

(ii) the marginal unit of capital earns zero profit

1 = α

[ ∞∑
τ=1

β̃τ (1− δ)τ−1Πp((1 + g)τ−1ε1)

]
f(ṽ); (A65)

(iii) flow wages

w̃i = η[fi(ṽ)m(ε1)− v′(ni)/ω] + (1− η)v′(ni); (A66)

(iv) optimal vacancy posting

κi = βλf (θi)
fi(ṽ)m(ε1)− w̃i − v′(ni)/ω

1− β(1− σ)
; (A67)

(v) optimal household search

h′(si) = βλw(θi)
w̃i − v′(ni)

1− β(1− σ)
; (A68)

(vi) the steady-state law of motion for employment

σni = λw(θi)si; (A69)

(vii) labor market clearing
µini
ṽi

=
µ1n1
ṽ1

. (A70)

Proof. The system of equations consists of variables 1 + 5N variables ε1, ṽi, ni, θi, si, w̃i, with

1 + 5N equations (A63)–(A70).

(i) On a BGP, the optimal investment equation (A55) equates capital’s marginal product to

the marginal cost of operation. Hence, the shadow value of a worker χ̃i is simply that worker’s

marginal product, given by

χ̃i = fi(ṽ)m(ε1), (A71)

where m is defined in equation (A64) as a weighted mean idiosyncratic productivity of capital that
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is utilized. Substituting χ̃i into the equation for ετ in (A54) and evaluating at τ = 1 gives

ε1 = (1 + g)

∑N
i=1 fi(ṽ)ṽi
f(ṽ)

m(ε1).

From the definition of f(v) = F (1, v) = v1−α, we know that f(v) is homogeneous of degree 1− α,

which is the labor share of the production function. Applying Euler’s theorem for homogeneous

equations gives
∑I

i=1 fi(ṽ)vi = (1− α)f(ṽ), so we have

ε1 = (1 + g)(1− α)m(ε1),

which is equation (A63). This is independent of any other labor market condition and only depends

on the parameters g, α, and the dispersion of idiosyncratic shocks σε.

(ii) Substituting our expression for
∑I

i=1 fi(ṽ)ṽi into the optimal investment condition (A56)

obtains

αf(ṽ) =

[
τ∑

τ=1

β̃τ (1− δ)τ−1Πp((1 + g)τ−1ε1)

]−1

which rearranges to the expression in equation (A65).

(iii) Substituting the value of χ̃i from (A71) into the definition of ν̃i (A51), the present value

of a type i worker to the firm ν̃i is

ν̃i =
fi(ṽ)m(ε1)− v′(ni)/ω

1− β(1− σ)
.

Substituting ν̃i into the vacancy-posting condition (A53) gives the simplified vacancy-posting con-

dition in equation (A67).

(iv) The household optimal search condition (A68) is a restatement of equation (A49).

(v) Substituting ν̃i into the BGP wage equation (A52) gives (A66).

(vi) The transition law for labor (A69) is a restatement of equation (A62).

(vii) The BGP labor market clearing condition (A58) rearranges to

µini
ṽi

= X̃

τ∑
τ=1

Πu(ετ )(1− δ)τ−1

Observe that the right-hand side of this equation is independent of i, so the left-hand side must be

the same for all i, which gives equation (A70).
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Wage Markdowns. We now describe how we arrive at the expression for the BGP wage mark-

down (26) from the main text. We will use equations (A51), (A53), and (A52) from the balanced

growth path, reproduced here in rearranged form:

ν̂i = χ̃i −
1

ω
v′(ni) (A72)

1− β(1− σ)

β

κi
λf (θit)

= (ρ+ σ)
κi

λf (θit)
= ν̂i − w̃i (A73)

w̃i = ην̂i + (1− η)v′(ni) (A74)

where ν̂i = [1− β(1− σ)]ν̃i is the flow value of the worker to the firm and ρ = 1
β − 1 is the rate of

time preference such that 1−β(1−σ)
β = 1

β − (1− σ) = ρ+ σ in (A73).

The expression for ν̂i, (A72), can be rewritten as χ̃i = ν̂i +
1
ωv

′(ni). The expression for the

annuitized vacancy posting costs, (A73), can be written as ν̂i = (ρ + σ) κi
λf (θi)

+ w̃i. Substituting

this expression for ν̂i into χ̃i implies that the ratio of w̃i to χ̃i is given by

w̃i

χ̃i
=

w̃i

w̃i + (ρ+ σ) κi
λf (θi)

+ 1
ωv

′(ni)
=

1

1 + (ρ+ σ) κi
λf (θi)

1
w̃i

+ 1
ω
v′(ni)
w̃i

, (A75)

where the second equation divides the numerator and denominator by w̃i. We now eliminate the

wage from the RHS of (A75). Equation (A73) can be written w̃i = ν̂i − (ρ + σ) κi
λf (θit)

. Plug this

into the wage equation (A74) and rearrange to get ν̂i = v′(ni) + (ρ+ σ) κi
λf (θit)

1
1−η . Then plug this

back into (A73) to get w̃i = v′(ni) +
η

1−η (ρ+ σ) κi
λf (θi)

. Finally, plug this into (A75) to get

w̃i

χ̃i
=

[
1 +

1

ω
× v′(ni)

v′(ni) +
η

1−η (ρ+ σ) κi
λf (θi)

+
(r + σ) κi

λf (θi)

v′(ni) +
η

1−η (ρ+ σ) κi
λf (θi)

]−1

(A76)

as in the main text.

Firm-Specific Labor Supply Elasticity. We can also use this algebra to derive equation the

firm-specific labor supply elasticity along the BGP from the main text. As in the main text, first

consider the participation constraint for firm j along the BGP:

β

1− β(1− σ)
λw(θij)

[
w̃ij − v′(ni)

(
nij
ni

) 1
ω

]
≥ W̃i.
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Differentiating with respect to the wage w̃ij and nij holding θij and W̃i fixed, we get

dw̃ij − v′(ni)
1

ω

(
nij
ni

) 1
ω
−1 dnij

ni
= 0 =⇒ d log w̃ij · w̃i =

v′(ni)

ω
d log nij ,

where the second line uses the fact that nij = ni and w̃ij = w̃i in a symmetric equilibrium. From

the derivation of the markdown equation above, we know that w̃i = v′(ni) +
η

1−η
1−β(1−σ)

β
κi

λf (θi)
.

Furthermore, from our calibration results, we also know that the annuitized portion of vacancy-

posting costs are small, implying that w̃i ≈ v′(ni). Plugging this in gives

d log w̃ij · v′(ni) ≈
v′(ni)

ω
d log nij =⇒ d log nij

d log w̃ij
≈ ω. (A77)

B Labor Market Policies
In this appendix, we show how to add to the model the two labor market policies that we study in

the main text: the minimum wage and transfer programs (like the EITC).

B.1 Minimum Wage

As in Appendix A, we first focus on the firm’s problem ignoring initial conditions in order to see how

the minimum wage changes the key decisions of the firm. We use this analysis to characterize the

long-run effects of the minimum wage along the BGP and prove Proposition 6 from the main text.

Finally, we add back in the initial conditions and discuss why firms are reluctant to fire workers

in our quantitative work. Throughout, we focus only on the equations that change relative to the

baseline model from Appendix A.

B.1.1 Introducing the Minimum Wage

The firm’s problem is the same as in Appendix A except that we add a minimum wage constraint

Wijt+1 ≥W t+1 for all t ≥ 0 (×Q0,tρijt+1) (A1)

and a nonnegativity condition on vacancies

aijt ≥ 0 for all t ≥ 0 (×Q0,tξ
a
ijt), (A2)

where Q0,tρijt+1 and Q0,tξ
a
ijt are the scaled multipliers. We assume that the firm fulfills the present

value by a constant wage per period that grows with time and satisfies the legislated minimum
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wage constraint on the flow minimum wage. That is, if the wage offered to workers in period t

who begin working in period t + 1 is wijt+1 ≥ w̄t+1, then in the net period we have wijt+2 =

(1 + g)wijt+1 ≥ (1 + g)w̄t+1 and so on. This leads to the constraint (A1) in terms of the present

value Wijt+1 = dt+1wijt+1 where dt+1 is a discounter defined by

dt+1 = 1 +Qt+1,t+2(1− σ)(1 + g) +Qt+1,t+3(1− σ)2(1 + g)2 + . . . ,

which accounts for discounting, separations, and growth. The reason that we specify this constraint

in terms of flow wages is that in practice that is how minimum wage legislation works. Our formu-

lation restricts wages inwill minimal ways consistent with the constraint that in each period the

flow wage is at least as high as its legislated minimum. Specifically, it prevents firms from offering

present values of wages in which in some periods the associated flow wage falls below the legislated

minimum.

First-Order Conditions. The only part of the firm’s problem that is affected by the minimum

wage are the equations in the hiring stage. Within the hiring stage, the first-order conditions for

employment nijt+1, (A6), and market tightness θijt, (A8), are not affected.

The first-order condition for vacancy posting aijt is now

−Q0,tκit −Q0,t+1λf (θijt)Wijt+1 +Q0,t+1λf (θijt)νijt+1 +Q0,tξ
a
ijt = 0

=⇒ κi
λf (θijt)

+Qt,t+1Wijt+1 ≥ Qt,t+1νijt+1, with equality if aijt > 0. (A3)

Here, we explicitly keep track of the multiplier on the nonnegativity constraint on vacancies, since

it will never bind without a minimum wage policy but it could bind with one. The only condition

that is directly affected is the first-order condition for wages Wijt+1, which now is

− λf (θijt)aijt + γijt+1 + ρijt+1 = 0, (A4)

where ρijt+1 is the multiplier on the minimum wage constraint. There are two cases. First, if the

minimum wage is not binding, then this equation is reduces to γijt+1 = λf (θijt)aijt. In this case,

plugging this expression back into the first-order condition for market tightness (A8) we get the

same equation as when there is no minimum wage, that is, (A10), which repeat here for convenience

Wijt+1 = ηνijt+1 − (1− η)Vijt+1.
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The interesting case is when the minimum wage is binding. Here we will simply use the first-

order condition for market tightness (A8) as an equation that defines the multiplier γijt+1 given

that Wijt+1 =W t. That is, we solve for γijt+1 using the following algebra

Wijt+1 = νijt+1 +
γijt+1

aijt

Wit

Qt,t+1λw(θijt)2
λ′w(θijt)

λ′f (θijt)

W t+1 = νijt+1 +
γijt+1

aijt

Wit

Qt,t+1λw(θijt)

λ′w(θijt)

λ′f (θijt)

1

λw(θijt)

W t+1 = νijt+1 +
γijt+1

aijt+1
(W t+1 + Vijt+1)

λ′w(θijt)

λ′f (θijt)

1

λw(θijt)

=⇒W t+1 = νijt+1 − γijt+1
1− η

η

W t+1 + Vijt+1

λf (θijt)aijt

=⇒ γijt+1 =
η

1− η

νijt+1 −W t+1

W t+1 + Vijt+1
λf (θijt)aijt.

In the second line, we plugged in Wijt+1 =W t+1. In the third line we used Wit/ [Qt,t+1λw(θijt)] =

W t+1 + Vijt+1 and in the fourth line we used λf (θijt)
λw(θijt)

λ′
w(θijt)

λ′
f (θijt)

= −1−η
η . Summarizing

γijt+1 =

 λf (θijt)aijt if slack
η

1−η

νijt+1−W t+1

W t+1+Vijt+1
λf (θijt)aijt if bind

 (A5)

Wijt+1 =

 ηνijt+1 − (1− η)Vijt+1 if slack

W t+1 if bind

 (A6)

and the sequence of multipliers on the participation constraint, γij1, ..., γit+1 show up in the value

of a worker equation

νijt+1 = χijt+1 +Mijt+1
unit+1

ucit+1

1

ω

(
nijt+1

nit+1

) 1
ω
−1 1

nit+1
+Qt+1,t+2(1− σ)νijt+2, (A7)

since Mijt+1 = γijt+1 + (1− σ)γijt + ...+ (1− σ)tγij1. So, in general, the value of Mijt+1 depends

on the entire binding pattern of the minimum wage.

Detrending. Here we state the conditions of the problem in stationary form to anticipate the

balanced growth path and we impose symmetry. The only conditions that change are those for

when the minimum wage is binding. When it is slack then, as before, γit+1 = λf (θit)ait is already
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stationary. When it binds then in detrended form the multiplier is

γit+1 =
η

1− η

(1 + g)t+1(ν̃it+1 − W̃ t+1)

(1 + g)t+1(W̃ t+1 + Ṽit+1)
λf (θit)ait =

η

1− η

ν̃it+1 − W̃ t+1

(W̃ t+1 + Ṽit+1)
λf (θit)ait.

So in detrended form (A5) becomes

γit+1 =

 λf (θit)ait if slack
η

1−η

ν̃it+1−W̃ t+1

W̃ t+1+Ṽit+1
λf (θit)ait if bind

 (A8)

and in detrended form wages are

W̃it+1 =

 ην̃it+1 − (1− η)Ṽit+1 if slack

W̃ t+1 if bind

 . (A9)

Of course, here also since the value ofMijt+1 depends on the entire binding pattern of the minimum

wage, so does the value of a worker given by

ν̃it+1 = χ̃it+1 −Mit+1v
′(nit+1)

1

ωnit+1
+Qt+1,t+2(1 + g)(1− σ)ν̃it+2. (A10)

B.1.2 BGP and Proof of Proposition 6

We summarize how the minimum wage impacts the BGP using the following Lemma, analogous to

Lemma 8 from Appendix A:

Lemma 9. Along the balanced growth path, the labor allocations and wages are determined by the

following equations:

(i) optimal cut-off for idiosyncratic productivity of capital

ε1 = (1 + g)(1− α)m(ε1), (A11)

where m(ε1) is defined by

m(ε1) =

∑∞
τ=1 β̃

τ (1− δ)τ−1Πp((1 + g)τ−1ε1)∑∞
τ=1 β̃

τ (1− δ)τ−1(1 + g)τΠu((1 + g)τ−1ε1)
; (A12)
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(ii) the marginal unit of capital earns zero profit

1 = α

[ ∞∑
τ=1

β̃τ (1− δ)τ−1Πp((1 + g)τ−1ε1)

]
f(ṽ); (A13)

(iii) flow wages

w̃i =
{
η[fi(ṽ)m(ε1)− v′(ni)/ω] + (1− η)v′(ni) if slack, w if bind

}
; (A14)

(iv) optimal vacancy posting

κi =

 βλf (θi)
fi(ṽ)m(ε1)−w̃i−v′(ni)/ω

1−β(1−σ) if slack

βλf (θi)
fi(v)m(ε1)−w
1−β(1−σ)

[
w−v′(ni)

w−v′(ni)(1−1/ω)

]
if bind

 ; (A15)

(v) optimal household search

h′(si) = βλw(θi)
w̃i − v′(ni)

1− β(1− σ)
; (A16)

(vi) the steady state law of motion for employment

σni = λw(θi)si; (A17)

(vii) labor market clearing
µini
ṽi

=
µ1n1
ṽ1

. (A18)

Proof. As described above, the only two equations change due to the presence of the minimum

wage: (i) the expression for the multiplier on the participation constraint (equation (A8) in the

detrended system) and (ii) the wage equation (equation (A9) in the detrended system). All the

other equations characterizing the equilibrium from the summary of BGP conditions from the

baseline model (A48)-(A62) continue to hold. Furthermore, the proof of conditions (i), (ii), (v),

(vi), and (vii) from Lemma 8 relied only on those other conditions, so they apply equally here.

Therefore, we only need to focus on the part of conditions (iii) and (iv) when the minimum wage

binds. Clearly, the wage equation when the minimum wage binds is simply w̃i = w, giving us the

binding part of condition (iii).

The remaining challenge is to prove condition (iv). Recall, that in the case where the minimum

wage is not binding, we substituted for the multiplier on the participation constraint γit from (A8)
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in the expression for the present value of a worker ν̃it+1 from (A14) and simplified to arrive at the

non-binding version of condition (iv) from Lemma 8. When the minimum wage is binding, we must

follow a different strategy because the multiplier on the participation constraint γit in (A8) itself

depends on the present value of a worker ν̃it+1, and the present value of a worker ν̃it+1 from (A10)

implicitly depends on the value of γit through the auxiliary variable Mit+1 = (1 − σ)Mit + γit+1.

Note that imposing balanced growth on (A10) gives

ν̃i =
χ̃i −Miv

′(ni)/(ωni)

1− β(1− σ)
. (A19)

Next, note that the BGP version of the multiplier on the participation constraint (A8) becomes

γi =
η

1− η

ν̃i −W

W − Ṽi
λf (θi)ai =⇒ γi

σ

1

ni
=
ν̃i −W

W + Ṽi
, (A20)

where the second line uses the BGP law of motion for employment λf (θi)ai = σni. Next, define

the numerator of (A19) as the flow value of a worker to the firm along the BGP by letting

ν̂i = χ̃i − Miv
′(ni)

1
ωni

. We then convert all the terms on the right side of (A20) by dividing

both the numerator and denominator by 1− β(1− σ) to get

γi
σ

1

ni
=

ν̂i − w

w − v′(ni)
. (A21)

Next, we will plug this expression into the flow value of a worker ν̂i = χ̃i −Miv
′(ni)

1
ωni

. Note

that the BGP version of the evolution of Mit+1 = (1 − σ)Mit + γit+1 is Mi =
γi
σ , so we can write

this flow value as

ν̂i = χ̃i −
γi
σ
v′(ni)

1

ωni
=⇒ ν̂i = χ̃i −

γi
σni

v′(ni)

ω
.

Now plug in the expression for γi
σni

from (A21) into this equation to get

ν̂i = χ̃i −
v′(ni)

ω

ν̂i − w

w − v′(ni)
. (A22)

We will use this implicit expression for ν̂i to obtain the expression for optimal vacancy posting

(A15).
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Now subtract the minimum wage w and solve for ν̂i − w to get

ν̂i − w = χ̃i − w − ν̂i − w

w − v′(ni)

v′(ni)

ω
=⇒ (ν̂i − w)

[
1 +

1

w − v′(ni)

v′(ni)

ω

]
= χ̃i − w

=⇒ (ν̂i − w)

[
w − v′(ni) + v′(ni)/ω

w − v′(ni)

]
= χ̃i − w

=⇒ ν̂i − w =

[
w − v′(ni)

w − v′(ni)(1− 1/ω)

]
(χ̃i − w) . (A23)

Finally, plug this into the detrended vacancy-posting condition given by

κi =
β

1− β(1− σ)
λf (θi) (ν̂i − w) .

to get

κi =
β

1− β(1− σ)
λf (θi)

[
w − v′(ni)

w − v′(ni)(1− 1/ω)

]
(χ̃i − w) . (A24)

Finally, note that the expression χ̃i = fi(v)m(ε1) continues to be true from the proof of Lemma 3.

Using this we obtain

κi =
β

1− β(1− σ)
λf (θi)

[
w − v′(ni)

w − v′(ni)(1− 1/ω)

]
[fi(v)m(ε1)− w] . (A25)

which completes the proof.

Proof of Proposition 6. We will now build on this characterization of the BGP under the

minimum wage to prove Proposition 6 from the main text. To do so, we must first extend the

space of policies to incorporate the two policies from Proposition 6. First, a type-specific minimum

wage can be represented as the detrended flow minimum wage, wi, specific for a type i worker.

Since the policy will set the minimum wage to its competitive level, which is strictly above the

monopsonistically competitive equilibrium value, the minimum wage will be binding for each type

of worker. Second, a subsidy to vacancy-posting can be represented by replacing the detrended

vacancy-posting cost κi with its after-subsidy version κi(1 − τi). With these two changes, the
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system of equations characterizing the allocation under the policies is

ε1 = (1 + g)(1− α)m(ε1) (A26)

1 = α

[ ∞∑
τ=1

β̃τ (1− δ)τ−1Πp((1 + g)τ−1ε1)

]
f(ṽ) (A27)

κi(1− τi) = λf (θi)
fi(v)m(ε1)− wi

ρ+ σ

[
wi − v′(ni)

wi − v′(ni)(1− 1/ω)

]
(A28)

h′(si) = βλw(θi)
wi − v′(ni)

1− β(1− σ)
(A29)

σni = λw(θi)si (A30)
µini
ṽi

=
µ1n1
ṽ1

. (A31)

The allocation in the competitive model can be obtained by evaluating Lemma 3 at ω = ∞:

ε1 = (1 + g)(1− α)m(ε1) (A32)

1 = α

[ ∞∑
τ=1

β̃τ (1− δ)τ−1Πp((1 + g)τ−1ε1)

]
f(ṽc) (A33)

κi = βλf (θ
c
i )
fi(ṽ

c)m(ε1)− w̃c
i

1− β(1− σ)
(A34)

h′(sci ) = βλw(θ
c
i )
w̃c
i − v′(nci )

1− β(1− σ)
(A35)

σnci = λw(θ
c
i )s

c
i (A36)

µin
c
i

ṽci
=
µ1n

c
1

ṽc1
(A37)

w̃c
i = ηfi(ṽ

c)m(ε1) + (1− η)v′(nci ). (A38)

We will show that the competitive allocation from equations also solves the equilibrium allocation

under the policy choices from Proposition 6. To do so, we evaluate the system of equations charac-

terizing the equilibrium under the policies, (A26)—(A31), at the competitive allocation (i.e. with

ṽ = ṽc, ñi = ñci , and so on). We will show that doing so gives the same system of equations as the

competitive system, (A32)—(A38).

Given this guessed allocation, the following equations are clearly the same because the wage does

not enter them directly: (i) the productivity cutoffs (A26) and (A32), (ii) the zero profit condition

for the marginal unit of capital (A27) and (A34), (iii) the law of of motion for employment (A30),

and (iv) the labor ratios (A31) and (A37). The household’s optimal search condition depends on
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the wage; since the policy sets the type-specific minimum wage wi = w̃c
i , these two conditions

(A29) and (A35) also coincide. Finally, under the choice for τi from the main text, the optimal

vacancy-posting conditions (A28) and (A34) also coincide.

Note that dividing the monopsony vacancy-posting condition (A28) evaluated at the competitive

allocation with the minimum wage policy wi = w̃c
i and the 1− τi in the proposition gives that

1− τi =

[
w̃ic− v′(nci )

w̃c
i − v′(nci )(1− 1/ω)

]
,

which is exactly how these subsidies are set. This establishes the result.

B.1.3 Initial Conditions

In all of our experiments, we assume that the economy is initially growing along the BGP without

policies, characterized in Appendix A, and then the policy is unexpectedly introduced in the initial

period t = 0. Up to this point, we have largely ignored the initial conditions faced by firms in

this initial period t = 0 and focused on the behavior of the economy from period t ≥ 1 onward.

In this subsection, we specify the initial conditions and whether firms fire workers in the initial

period t = 0. The firm takes as given four sets of initial conditions drawn from the initial BGP

when solving its problem in period t = 0. First, the firm inherits a distribution of capital stocks

Kj0(v−τ , A−τ ), where v−τ is the vector of labor intensities chosen along the initial BGP in periods

−1,−2, . . . and A−τ is the corresponding level of vintage productivity. Second, the firm inherits a

measure of employed workers of each type i, Nij0 = Ni0, equal to the employment rate Ni of each

group from the BGP. Third, the firm inherits the flow wage schedule initially promised to each of

these worker types along the BGP. Given that flow wages grow at a constant rate within a match,

this flow wage schedule is summarized by wi0, the flow wage promised to workers of group i in

period t = 0. Under the minimum wage, firms must now pay these workers ŵi0 = max{wi0, w}

in period t = 0, ŵi1 = max{(1 + g)wi0, (1 + g)w} in the following period t = 1, and so on. Let

Ŵi0 =
∑∞

t=0Q0,t(1− σ)tŵit denote the present value of wage payments promised to these workers

going forward. Finally, the firm inherits the Marcet-Marimon cumulation of multipliers Mi0 from

the initial BGP to reflect promises made to workers hired before period t = 0.

We assume that when the minimum wage is unexpectedly introduced in period t = 0, a firm j

can choose to fire a measure Fij0 of its initially employed workers. However, for all workers that it

does not fire, the firm must pay them at least the flow minimum wage each period.
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Initial Period Decisions. The majority of the firm’s problem is identical to the what we have

already studied except for decisions in the initial period t = 0. Furthermore, nearly all decisions

about hiring and investment made in this period only impact the firm’s objective starting in period

t ≥ 1 onward, so those are unchanged. The only exception is the option for the firm to fire Fij0

workers in the initial period. The option to fire workers affects the profit maximization problem in

four ways. First, for each fired worker, the firm saves itself the present value of flow wages it would

have been obliged to fire that worker had they remained employed. Hence, the term
∑

i Ŵi0Fij0

is added to the firm’s objective function. Second, the adding up constraint in the assignment of

workers to machines must reflect the fact that the firm may fire some of the existing workers:

∞∑
τ=1

vi,−τuj0(v−τ , ε, A−τ )Kj0(v−τ , A−τ )π(ε)dεdv ≤ Nij0 − Fij0 (×χij0),

where χij0 is the multiplier on this constraint. Note that, since this constraint holds with equality

along the initial BGP, positive firing Fij0 > 0 requires lowering the utilization rates of existing

capital. Third, we must modify the law of motion for employment to account for firings as well:

Nij1 ≤ (1− σ)(Nij0 − Fij0) + λf (θij0)µiaij0 (×Q0,1νij1),

where νij1 is the scaled multiplier on this constraint. Finally, firms must satisfy the non-negativity

constraint Fij0 ≥ 0 for (×ξfij0).

First-Order Condition. The first-order condition with respect to Fij0 is Ŵi0 − χij0 −Q0,1(1−

σ)νij1 + ξfij0 = 0 or, equivalently,

Ŵi0 − χij0 −Q0,1(1− σ)νij1 + ξfij0=0 =⇒ χij0 +Q0,1(1− σ)νij1 ≥ Ŵi0, with equality if Fij0>0.

(A39)

That is, firms do not fire workers if the present value of the workers’ benefits to the firm — their

marginal product in period t = 0, χij0 plus their present value going forward, Q0,1(1 − σ)νij1 on

the LHS of (A39) — is strictly greater than the present value of wage payments to those workers

— Ŵi0 on the RHS of (A39). This is the only new condition for the initial period t = 0; all other

conditions are the same as in the baseline model.
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B.2 Transfer Programs

We now turn to the transfer programs. Section B.2.1 shows how transfers impact the household’s

problem. Section B.2.2 shows how transfers impact the firms problem. Section B.2.3 shows how to

detrend those conditions and arrives at the BGP.

B.2.1 Households

We first provide some additional notation related to the transfer system, and then show how it

affects the solution to the household’s problem.

Notation. As in the main text, we will represent the transfer system in terms of the after-transfers

wages that households receive. In particular, if the firm pays the flow wage wijt, then households

receive the flow payment At(wijt) which includes the transfers from the government. Also as in the

main text, we assume that the transfer system satisfies the property At(wijt) = (1 + g)tA(w̃ijt)

for some time-invariant function A(w̃) where, as usual, tildes denote detrended variables. Note

that this assumption also implies that A′
t(w) = A′(w̃).21 We use the discounter operator dt+1 =

1+Qt+1,t+2(1+g)(1−σ)+Qt+1,t+3(1+g)
2(1−σ)2+ . . . to convert this stream of flow payments to

the worker to the present value WH
ijt+1 = dt+1At(wijt+1). From the firm’s perspective, the present

value of wage costs is the same as in the baseline model Wijt+1 = dt+1wijt+1.

Household’s Problem. The transfer program changes two parts of the household’s problem

relative to our baseline model. First, the wages received in the budget constraint are WH
ijt from

above, to reflect the present value of transfer payments. Second, the present value of profits need

to reflect the corporate taxes to fund the program.

More formally, the household’s utility maximization problem is now

max
cit,sijt,nijt+1

∞∑
t=0

βtUt(cit, nit, sit) such that

nijt+1 = (1− σ)nijt + λw(θijt)sijt (×βtV̂ijt+1)

∞∑
t=0

Q0,tcit = ψi(1− τc)P+ Ii +
∞∑
t=1

Q0,t

∑
j

λw(θijt−1)sijt−1W
H
ijt (×Γ),

21To see this, note that

A′
t(w) =

d

dw
At(w) =

d

dw
(1 + g)tA(w̃ijt) = (1 + g)t

d

dw
A(

w

(1 + g)t
) =

(1 + g)t

(1 + g)t
A′(w̃) = A′(w̃).
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where τc is the profits tax rate. As usual, the variables in parentheses denote the (often rescaled)

Lagrange multiplier associated with the constraint. Compared to the household problem in the

baseline model from Appendix A, the only first-order condition which changes is the one for search

effort to take into account that wage payments are now WH
ijt+1:

− usit
ucit

= λw(θijt)Qt,t+1

(
Vijt+1 +WH

ijt+1

)
. (A40)

The fact that the optimal search condition (A40) also changes the participation constraint which

firms will take as given:

λw(θijt)(W
H
ijt+1 + Vijt+1) ≥ Wit. (A41)

B.2.2 Firms

We now turn to how the transfer program affects the solution to the firm’s problem. We first restate

the profit maximization problem and then derive the FOCs. As with our minimum wage analysis,

we abstract from initial conditions in this section and focus on the conditions that change due to

the presence of the transfer program.

Firm’s Problem. The presence of the transfer system changes the firm’s problem in three ways.

First, the participation constraint (A41) now reflects the fact that households receive transfers, as

derived above. Second, and related, we re-state the firm’s wage choice in terms of the initial flow

wage wijt+1 instead of the present value. Using wijt+1 as the choice variables allows us to capture

how firms’ wage-posting decisions affect both the present value of households’ post-transfer income

and firms’ pre-transfer costs. Third, the profits tax multiplies flow profits each period by 1 − τc.

However, since the tax rate is constant, this change amounts to multiplying the objective function

by 1− τc, which doesn’t affect the profit-maximizing decisions. We therefore drop the 1− τc from

the exposition to keep the equations as close to our baseline model as possible. We abstract from

the possibility that firms will want to fire initial workers given that it will not be relevant for this

policy. With these changes, the profit maximization problem is
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∑
t

Q0,t

(∑
τ

∫
v,ε

ujt(v,At−τ , ε)At−τεf(v)Kjt(v,At−τ )π(ε)dεdv −
∑
i

µi(λf (θijt−1)aijt−1dtwijt + κitaijt)

−
∫
Xjt(v)dv

)
+

∞∑
t=0

Q0,t+1µiMijt+1
Unit+1

Ucit+1

(
nijt+1

nit+1

) 1
ω

+

∞∑
t=0

Q0,t+1µiγijt+1

[
dt+1At+1(wijt+1)−

Wit

Qt,t+1λw(θijt)

]
such that ujt(v,At−τ , ε) ≥ 0 (×Q0,tλ

L
jt(v,At−τ , ε))

ujt(v,At−τ , ε) ≤ 1 (×Q0,tλ
U
jt(v, ε, At−τ ))

ujt(v,At−τ , ε)viKjt(v,At−τ )π(ε) ≤ Nijt(v,At−τ , ε) for all i (×Q0,tλijt(v,At−τ , ε))∑
τ

∫
v,ε

Nijt(v,At−τ , ε)dεdv ≤ µinijt for all i (×Q0,tχijt)

µinijt+1 ≤ (1− σ)µinijt + λf (θijt)µiaijt for all i (×Q0,t+1νijt+1)

Kjt+τ+1(v,At) = (1− δ)τXjt(v) (×Q0,t+τ+1qjt,t+τ+1(v))

Xjt(v) ≥ 0 (×Q0,tµjt(v)).

First-Order Conditions. As with the minimum wage, the only part of the firm’s problem that is

affected are the equations in the hiring stage. Within the hiring stage, the first-order conditions for

employment nijt+1, vacancies aijt, and market tightness θijt are unaffected. However, the transfer

system will change how we simplify the first-order condition for market tightness (A8), so we

reproduce it here:

Wijt+1 = νijt+1 +
γijt+1

aijt

Wit

λw(θijt)2
λ′w(θijt)

λ′f (θijt)
. (A42)

The first-order condition which changes is the one for wages wijt+1:

−Q0,t+1µiλf (θijt)aijtdt+1 +Q0,t+1µiγijt+1dt+1A
′
t(wijt+1) = 0 =⇒ γijt+1 =

λf (θijt)aijt
A′

t(wijt+1)
. (A43)

Hence, as stated in the main text, the the transfer system changes the multiplier on the participation

constraint. This multiplier then affects two things. First, it enters the law of motion for the auxiliary

variable Mijt+1 = (1 − σ)Mijt + γijt+1. Second, it affects how we simplify the FOC for market

tightness (A42). Plugging the expression for the multiplier (A43) into the FOC for market tightness
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(A42) gives

Wijt+1 = νijt+1 +
λf (θijt)

λw(θijt)

Wit

λw(θijt)

λ′w(θijt)

λ′f (θijt)

1

A′
t(wijt+1)

= νijt+1 +
λf (θijt)

λw(θijt)

(
WH

ijt+1 + Vijt+1

) λ′w(θijt)
λ′f (θijt)

1

A′
t(wijt+1)

= νijt+1 −
1− η

η

WH
ijt+1 + Vijt+1

A′
t(wijt+1)

. (A44)

where in the second line we used Wit
λw(θijt)

=WH
ijt+1+Vijt+1 and in the third line we used λf (θijt)

λw(θijt)
λ′
w(θijt)

λ′
f (θijt)

=

−1−η
η . In the baseline model, we were able to further simplify (A44) in order to get a closed-form

expression for the present value of wage payments Wijt+1. However, we’re not able to do so in this

case due to the transfer system.

B.2.3 Detrending and BGP

The only equilibrium conditions which have changed relative to the baseline are the search FOC

(A40) and the wage equation (A44). We therefore focus our discussion of detrending on those

conditions. For the search FOC (A40), first note that

WH
it+1 = dt+1At(wijt+1) = dt+1(1 + g)tA(w̃ijt+1) =⇒ W̃H

ijt+1 = dt+1A(w̃ijt+1),

where the second equation uses our assumption that At(wijt+1) = (1 + g)tA(w̃ijt+1). Plugging this

into the search FOC gives

(1 + g)th′(sit) = Qt,t+1λw(θit)(1 + g)t+1
(
W̃H

it+1 + Ṽit+1

)
=⇒ h′(sit) = Qt,t+1(1 + g)λw(θit)

(
W̃H

it+1 + Ṽit+1

)
. (A45)

To detrend the wage equation (A44), recall the property that A′
t(wijt+1) = A′(w̃ijt+1). Therefore,

W̃ijt+1 = ν̃ijt+1 −
1− η

η

W̃H
ijt+1 + Ṽijt+1

A′(w̃ijt+1)
and γijt+1 =

λf (θijt)aijt
A′(w̃ijt+1)

. (A46)

C Data Appendix
This appendix contains details about our data sources and targeted moments. We use data from

the pooled 2017-2019 American Community Survey (ACS).22 Our sample includes all individuals
22We downloaded the data directly from https://usa.ipums.org/usa/.
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aged 16 and over. All observations are weighted using the weights provided by the ACS.

Share of College Workers. We define college individuals as those individuals who report having

a bachelor’s degree or higher. During the 2017-2019 period, 31.3% of our sample had at least a

bachelor’s degree.

Employment Rates. We focus on full-time employment and on workers strongly attached to

the labor force. We define individuals as being full-time employed if 1) they are currently working

at least 30 hours per week; 2) they reported working at least 29 weeks during the prior year; and 3)

they reported positive labor earnings during the prior 12 month period. For our 2017-2019 sample,

46.8% of non-college individuals and 62.4% of college individuals worked full-time.

Share of Income Earned by College Workers. For the 2017-2019 period, 37.8% of indi-

viduals working full-time were college educated. Conditional on being full-time employed, mean

annual earnings for college individuals total $91,706, whereas mean annual earnings for non-college

individuals total $44,871. Given these statistics, we calculate that 55.5% of all earnings of full-time

workers accrued to workers with at least a bachelor’s degree.

Table 1: Average Wages by Education Group in ACS Data

Less than High School High School Some College College
[0.5ex] Average wage $16.6 $19.6 $21 $37.4

Notes: Average wages of full-time workers by education group in ACS data.

Wage Distributions. We compute hourly wages for our sample of full-time workers by dividing

annual labor earning by annual hours worked. We calculate annual hours worked as the product

of weeks worked last year and reported usual hours worked. We impose two additional sample

restrictions when measuring the wage distribution. First, we restrict the sample to only those

workers who report at least $5,000 of labor earnings during the prior year. Second, we truncate the

resulting distribution of hourly wages of each education group at the top and bottom 1%. All wages

are converted to 2019 dollars using the June CPI-U. From these data, we compute the median wage

and standard deviation of wages for each education group as well as the ratios of wages between the

10th percentile and the median for each of the education groups. These moments are used as part

of our parameterization strategy. We also show that even though only those moments are targeted

for each education group, our model matches the full distribution of wages for each education group
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quite closely. The heterogeneity of wages within education groups swamps the heterogeneity across

education groups, motivating our choice to primarily focus on within-group heterogeneity. Related

to this choice, Table 1 shows that the average wage of each education group is higher than $15 per

hour. Hence, modeling within-group heterogeneity is necessary for even a high minimum wage to

be binding for any worker.

D Validating Use of Long-Run Elasticity Estimates
We now provide the details about how we replicate Card and Lemieux (2001)’s estimation strategy

in our model. As explained in the main text, Card and Lemieux (2001) exploit within-education-

group variation in employment rates by age, which they identify as a skill level, zi. We replicate

this variation through exogenous changes in the measure of families, µit. Section D.1 shows how we

extend our model to incorporate time-varying measures of families. Section D.2 then explains how

we choose the specific path of µit to mimic the empirical variation utilized by Card and Lemieux

(2001). Finally, Section D.3 shows the results of this exercise and explains why this procedure

recovers a value for the long-run elasticity of substitution among workers very close to that estimated

by Card and Lemieux (2001).

D.1 Model Extension

We model changes in the measure of families, µit, as a one time unanticipated shock after which

agents in the model have perfect foresight. Specifically, the economy starts at an initial BGP with

measures µi, and at time t = 0 agents learn about a new path of measures {µit} over time that

converge to a new constant level µ∗i at some point T in the future.

To proceed, we must first specify the objective function of a type-i family now that the measure

of the family changes over time. We assume the family maximizes

∞∑
t=0

βtµitUt(cit, nit, sit),

where cit, nit, and sit are per-capita variables. This “utilitarian” utility function captures the average

utility of each household member and weighs each member equally. In our numerical experiments,

the path of µit is such that there are new members of the family available to work in each period.

We assume that each of these new family members’ initial labor market state is unemployment.

Hence, they must search for a period before they can be hired by a firm. Therefore, the law of
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motion for employment of family i at firm j is

µit+1nijt+1 = (1− σ)µitnijt + λw(θijt)µitsijt,

where nijt and sijt correspond to per-capita variables as in the baseline model. In our baseline,

µit+1 = µit so this equation reduces to nijt+1 = (1− σ)nijt + λw(θijt)sijt.

In per-capita terms, the budget constraint is now

∞∑
t=0

Q0,tµitcit ≤ µi0 (ζiP0 + Ii) +
∞∑
t=1

Q0,tµit−1

∑
j

λw(θijt−1)sijt−1Wijt,

where, as before, ζiP0 is the per-capita share of family i in the present value of firm’s profits and Ii

is the per-capita present value of wages promised to initial workers. Putting all this together, the

household’s utility maximization problem is

max
cit,sijt,nijt+1

∞∑
t=0

βtµitUt(cit, nit, sit)

s.t. µit+1nijt+1 = (1− σ)µitnijt + λw(θijt)µitsijt

s.t.
∞∑
t=0

Q0,tµitcit ≤ µi0 (ζiP0 + Ii) +
∞∑
t=1

Q0,tµit−1

∑
j

λw(θijt−1)sijt−1Wijt

It turns out that this utility maximization problem leads to equilibrium conditions that naturally

extend those of our baseline model, with the constant measure of each family µi from the baseline

replaced by the time-varying measure µit. Results are available upon request.

D.2 Mimicking the Variation in Card and Lemieux (2001)

Card and Lemieux (2001) estimate the elasticity of substitution ϕ using residual variation in em-

ployment rates across different groups of workers within a given education group. A key assumption

is that this residual variation reflects changes in labor supply. In this spirit, we mimic their vari-

ation by assuming that the measure of each family i, µi, changes over time as denoted by µit in

a way consistent with their data. Card and Lemieux (2001) identify zi by assuming that, within

an education group, all workers within a 5-year age group share the same zi. In their published

paper, Card and Lemieux (2001) report the time series of the ratios of college to non-college em-

ployment rates NjHt

NjLt
for each age group j, but not the employment rates of each group NjHt and

NjLt separately. We therefore proceed in two steps. First, we use additional assumptions to infer

the time-series variation in NjHt and NjLt from what Card and Lemieux (2001) report about NjHt

NjLt
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in the data. Second, we then back out the variation in the measures of families µit which replicates

this variation in employment rates within our model.

Mimicking the Employment Rate Variation in Card and Lemieux (2001). Let xjt =

NjHt

NjLt
denote the ratio of college to non-college employment for age group j reported by Card and

Lemieux (2001).23 Card and Lemieux (2001) classify workers into N = 6 different age groups, which

we assume correspond to different within-education group skill levels ze,j in our model so that the

youngest group corresponds to ze,1, the next youngest group corresponds to to ze,2, and so on. The

sample used by Card and Lemieux (2001) covers the period between 1960 and 1995. The spirit

of our modeling exercise will be that the measures of families change over this 35-year sample,

at which point they remain constant and the economy settles into a new BGP. We will further

assume that this new BGP corresponds to the calibrated steady state of our model. Hence, we will

choose the time path of the measures of families µit such that the percentage change in the model’s

employment series relative to the final BGP corresponds to Card and Lemieux (2001)’s variation

relative to the end of their sample.24

We construct the percentage changes in the employment series NjLt and NjHt in the following

way. First, we construct a time series of our targeted ratios xjt = NjHt/NjLt relative to their 1995

endpoint in Card and Lemieux (2001)’s sample. Second, in order to separately construct the levels

of NjHt and NjLt, we will bring in additional information about the total employment of all workers

in age group j, denoted ajt ≡ NjLt +NjHt. Given a value of ajt and the ratio xjt, we can solve for

NjLt = ajt/(1 + xjt) and NjHt = xjtajt/(1 + xjt). To compute the time series of ajt for each age

group j, we assume that the terminal value ajT equals its value in our calibrated BGP, compute an

initial value aj0 from the 1960 Census data described in Appendix C, and assume that ajt grows

at a constant rate over the sample.

Backing Out Variation in Measures of Families. Equipped with the resulting series of

employment rates Nit for each worker type i = (e, z), our second step consists of determining

the measure of families µit in our model such that the model’s equilibrium employment series

Nit = µitnit matches the data (recall that nit is the per-capita employment rate of family of type
23In particular, Figure IV in Card and Lemieux (2001) reports cohort fixed effects, which capture 98% of the

time-series variation in the employment ratios xjt—intuitively, because college attainment decisions are made before
workers enter the labor force. We back out the time-series variation in xjt from these cohort effects. Since Card and
Lemieux (2001) effectively report xjt for 5-year intervals, we log-linearly interpolate between these points.

24Of course, the last year of the model’s 35-year sample does not exactly equal the new BGP because it takes time
for the economy to exactly converge to the new BGP once the measures stop changing. However, we find that the
two points are close.
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i in t). In principle, this step requires solving a complicated fixed-point problem. Namely, for any

candidate path of measures µit, we must solve for the equilibrium of the model, derive the implied

path of aggregate employment series Nit, check if it matches the empirical path, and if not, update

the guess of each µit. Computationally, this procedure is prohibitively costly because it requires

solving for the entire transition path for each candidate µit.

Instead, we compute the path of measures µit from a simpler approach that approximately

matches the path of Nit from the data. In this exercise, we assume that the economy is initially

along some BGP with measures µi0, where we choose µi0 to match the initial values of Ni0 from the

data described above. At date t = 0, all agents unexpectedly learn about a new exogenous path of

measures µit from t = 0 to a final point 35 years later, after which these measures remain constant.

As described above, we assume that these final measures µiT correspond to the calibrated BGP from

Section 4. In order to construct the time path of measures in between these two points, we compute

the path of µit which solves the approximate relationship Ndata
it = µitn

∗
i , where n∗i is the per-capita

employment rate for each family i in the final BGP. This relationship is an approximation because

per-capital employment rates nit may endogenously change over time in equilibrium in response to

the changes in measures µit.

D.3 Results

Given the variation described, we construct an estimator for the long-run elasticity of substitution

ϕ following an established approach in the literature. In particular, suppose — like the majority

of the literature which estimates this elasticity — that we interpret the data through the lens of

a static CES production function G(N) under perfect labor market competition, and accordingly

construct the natural estimator ϕ̂ of ϕ. Our question now is: How biased would that estimator be

if the true data-generating process were our model? We set to address this question next.

Estimator. To motivate the estimator we use, note first that under the assumption of a static

and competitive labor market, the ratios of wages of workers with different skills equal the ratios

of their marginal products,
wit

wjt
=
zi
zj

(
Nit

Njt

)− 1
ϕ

.

Under the CES form for G(N), the ratio of marginal products depends on the ratio of employment

rates as well as the ratio of skill levels zi/zj . Since these skill levels are constant over time, taking
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log-differences over time of the above condition gives

∆log

(
wit

wjt

)
= − 1

ϕ
∆log

(
Nit

Njt

)
. (D1)

Intuitively, we can use variation in labor supply to trace out firms’ labor demand schedule, which

depends on ϕ. We obtain an estimate of ϕ by estimating (D1) through a simple linear regression

using our model-simulated data constructed above. To construct the ratios wit
wjt

and Nit
Njt

in our

model, we choose the middle skill level j0 = N/2 to be in the denominator, and then compute we,j′t
we,j0t

for all j′ ̸= j0 and e ∈ {L,H}. Following Card and Lemieux (2001), for each of these ratios, we

compute 5-year time differences except for the first observation, which is a 10-year difference. We

then run the unweighted regression across each group and time period.

Results. Table D.1, which reproduces Table 4 from the main text, illustrates the results of this

exercise. The first column displays the true value of ϕ = 4. The second column shows that our

estimator leads to an estimate ϕ̂ = 3.94 of ϕ, very close to the true value. We conclude from

this exercise that the estimates of the long-run elasticity of substitution in the literature provide

appropriate discipline to pin down the value of ϕ in our model as well. The last column of the table

shows that by estimating ϕ using a long difference between the final BGP and the initial BGP, we

recover almost exactly the true value. The only slight difference stems from the presence of search

frictions which, as noted in the main text, do not vary meaningfully across workers with different

productivity. As noted in the main text, the estimator may not perform well in our model due

to the existence of the putty-clay frictions. Because of these frictions, the 5-year time differences

employed by Card and Lemieux (2001) reflects not only the true long-run substitution possibilities

among workers assigned to new capital but also the employment ratios required to operate existing

capital. Since these old employment ratios are rigid, taking them into account would bias the

estimator ϕ̂ downward relative to the true value of ϕ. From this perspective, it may be surprising

that our estimator does so well, despite the importance of putty-clay frictions in determining the

slow response of the economy to changes in policy.

As argued in the main text, we interpret this finding as implying that putty-clay frictions are

less important in shaping the value of ϕ that we recover than in shaping the response of the economy

to, say, changes in the minimum wage. Figure D.1 further illustrates this logic. The two panels in

the figure illustrate the wage and employment ratios for two non-college worker types j′ relative

to the base type j0 over the entire transition path. For both types of workers, the log-change in
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Table D.1: Estimation Strategy for Long-Run Elasticity ϕ in Literature

True value Card and Lemieux (2001) Variation Comparing BGPs Only
ϕ = 4 ϕ̂ = 3.94 ϕ̂ = 3.99

Notes: Results from simulating the model for the time path of measures of families µit as described in text.
True value reports the value of the long-run elasticity of substitution across workers ϕ = 4 used to simulate the
model. Card and Lemieux (2001) Variation reports the estimate ϕ̂ from the regression in (D1) using 5-year time
differences, with the exception of the first observation which is a 10-year difference. “Comparing BGPs Only”
reports the estimator ϕ̂ from (D1) using a long difference between the new BGP and the initial BGP.

Figure D.1: Variation in Employment and Wage Ratios for Estimating Elasticities
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Notes: time path of employment ratios and wage ratios for individual non-college worker types for variation in
measures of families µit. Employment ratios are NL,j′t/NL,j0t where NL,j′t = µL,j′tnL,j′t and NL,j0t = µL,j0tnL,j0t

are the total measures of workers of that type and j0 = N/3 is the base type, as described in the text. Wage ratios
are similarly defined as wL,j′t/wL,j0t, where wL,j′t and wL,j0t are average wages among employed workers.

their employment ratios is approximately equal to −ϕ = −4 times the log-change in their wage

ratios by (D1). Firms’ adjustment of these ratios is smooth because the underlying variation in the

measures of families is itself smooth, and firms can predict it starting at t = 0.25 In contrast, the

policy experiments analyzed in the main text involve an immediate and unexpected jump in policy.

E Additional Quantitative Results
This Appendix contains two additional quantitative results about the minimum wage.

E.1 Impact of Minimum Wage Changes on College Workers

In the main text, we focused on how labor market policies affected employment and labor earnings

of non-college workers. These workers are most likely to be effected by the labor market policies we

studied. In this subsection, we show how minimum wage changes of various sizes would affect non-
25Consistent with this predictability, the adjustment of employment ratios vs. wage ratios is farthest from ϕ in the

early stages of the transition.
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college workers. Appendix Figure E.1 plots the transition paths of aggregate college employment

and labor income following the introduction of our three illustrative minimum wages. The small

minimum wage has almost no effect on college employment and labor income because it is not

binding for nearly all college workers. The medium minium wage has a very small positive effect

on college employment and income because it reduces the monopsony distortion of a few low

productivity college workers. Finally, the large minimum wage has a slightly negative effect on

college employment for two reasons. First, the large minimum wage now binds on some lower

productivity college workers. Second, the large reduction in non-college employment also reduces

the marginal product of college workers because they are complementary in production.

Figure E.1: Dynamic Effects of the Minimum Wage for College Workers
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Notes: Transition paths of aggregate college employment (left panel) and labor income (right panel) following the
introduction of the minimum wage. Employment is expressed in percentage deviation from the initial BGP. Labor
income, net of trend growth (1 + g)t, is expressed relative to the initial BGP.

E.2 Additional Robustness

Figure 10 in the main paper showed the robustness of the speed of transition to the new BGP when

we change various parameters. In this subsection of the appendix we show how those parameters

affect long rung changes in aggregate employment for non-college workers in response to a $15

minimum wage. Specifically, Appendix Figure E.2 plots our sensitivity analysis from Figure 10 of

the main paper in terms of percentage deviations from the initial BGP rather than percentage of

the total long run change. In this space, we can better assess the long-run effects of these various

parameterizations. For example, the parameterization with less monopsony power (i.e. higher ω)

leads to a larger long-run decline in non-college employment.
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Figure E.2: Sensitivity Analysis for $15 Minimum Wage, Non-College Employment
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Notes: Figure shows transition of non-college employment expresses as the percent deviation from the original
BGP. “Baseline” corresponds to the model shown in Figure 6. “Higher ω−1” corresponds to a degree of monop-
sony power of ω−1 = 1/6 that produces an 85% markdown. “Higher ϕ” corresponds to a long-run elasticity of
substitution within education groups of ϕ = 4.5. “Lower σε” corresponds to a standard deviation of idiosyncratic
capital productivity of σε = 0.01 that generates a steady-state capacity utilization rate of 97%. “Higher δ” sets
the depreciation rate to δ = 20% annually. “Lower g” corresponds to a trend growth rate of g = 1%. “Higher σ”
sets the job-destruction rate to σ = 3.5% monthly. “Higher κ” increases the baseline vacancy-posting cost κ0 by
2.5 times, which approximately doubles the average hiring costs κi/λf (θi) to 125% of average monthly wage.
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