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1 Introduction

The defining feature of business cycles is the comovement of production across different

sectors of the economy. However, recent work has shown that the degree of sectoral comove-

ment has fallen since the early 1980s, suggesting that sector-specific shocks have become

more volatile relative to aggregate shocks.1 Our basic questions are how these sector-specific

shocks are propagated to macroeconomic aggregates and whether their rising importance

helps understand the changing nature of business cycles since the early 1980s. Of course,

a large literature studies the role of the input-output network of intermediate goods in

propagating sector-specific shocks. Given the importance of investment in business cycle

fluctuations, we instead focus on the role of the investment network — the distribution of

investment production and purchases across sectors — in propagating these shocks.

We argue that the investment network is an important propagation mechanism for un-

derstanding business cycle fluctuations in three main steps. First, we measure the investment

network in the data and show that investment production is dominated by a small number

of investment hubs which are substantially more cyclical than other sectors. Second, we em-

bed our measured investment network into a standard multisector real business cycle model

and show that sector-specific shocks to investment hubs and their key intermediates sup-

pliers have large effects on aggregate employment, driving down labor productivity. Third,

we measure the realized time series of sector-level shocks in the data, feed them into our

model, and show that shocks to the hubs and their key suppliers account for a large and

increasing share of aggregate fluctuations over time. This fact allows the model to generate

the declining cyclicality of labor productivity and other changes in business cycle patterns

since the early 1980s — despite the fact that the model has flexible prices and frictionless

labor adjustment.

The first step in our analysis is to measure the investment network, which we define as the

amount of investment goods that are produced in sector i and subsequently sold to sector j

for each pair of sectors (i, j). While the BEA has released this information in its capital flows

tables, those tables are only available for a small subset of years, do not include the majority
1See, for example, Foerster, Sarte and Watson (2011) or Garin, Pries and Sims (2018).
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of intellectual property, and are not consistently coded across time. We therefore perform

our own measurement of the investment network building on disaggregated asset-level data

for each sector. Our network covers a 37-sector disaggregation of the entire private nonfarm

economy, incorporates all of intellectual property, and is available each year between 1947-

2018. For most of our analysis in this paper, we will average the network over time and

refer to the averaged network as “the” investment network. We have constructed alternative

investment networks which incorporate agriculture and government sectors; separate equip-

ment, structures, and intellectual property products; and make other adjustments that may

be of interest to other researchers. We have also constructed the network of capital rental

services across sectors.

Our measured investment network is extremely sparse; four investment hubs — construc-

tion, machinery manufacturing, motor vehicles manufacturing, and professional/technical

services — produce nearly 70% of total investment even though they only account for 15%

of value added, employment, or intermediates production. Production and employment in

these hubs are more volatile, more correlated with aggregates, and more strongly lead the

aggregate cycle than in non-hub sectors, consistent with the hubs’ central role in our model.

The second step of our analysis is to incorporate this measured investment network into

a version of the multisector real business cycle framework from Horvath (2000). Each sector

produces gross output using capital, labor, and a bundle of intermediate goods consisting

of other sectors’ output; this bundle is a Cobb-Douglas aggregate which characterizes the

intermediates input-output network. Each sector also accumulates new capital using another

Cobb-Douglas aggregator of investment goods, which characterizes the investment network.

While other studies have also used this basic model structure, we discipline it with our new

measurement of the investment network, explicitly study the network’s role in propagating

sector-specific shocks, and show that it quantitatively accounts for the declining cyclicality

of labor productivity and other changes in business cycle patterns over time.

Our main new mechanism from this model is that shocks to investment hubs and their

key suppliers generate large changes in aggregate employment while shocks to other sectors

do not. This result reflects the fact that a sector-specific shock only affects employment if

it increases the production of investment goods in the economy; shocks that only affect the
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production of consumption goods generate offsetting income and substitution effects, leaving

employment unchanged. We show that the importance of each sector in producing investment

goods can be summarized using the Leontief-adjusted investment network, which accounts

for both directly producing investment goods and indirectly supplying intermediate goods

to investment producers. Shocks to hubs and their key suppliers in this network thus act as

aggregate investment supply shocks.2 In contrast, shocks to other sectors act as idiosyncratic

investment demand shocks, which do not generate large changes in employment.

Our third step is to quantify the importance of this mechanism in explaining the postwar

U.S. time series by feeding the realizations of sector-level productivity shocks into a calibrated

version of the model. Since the early 1980s, the covariance of productivity shocks across

sectors has fallen by much more than the variance of shocks within sectors, which we interpret

as reflecting a decline in the volatility of aggregate shocks relative to the volatility of sector-

specific shocks. This change is consistent with the decline in aggregate volatility following

the Great Moderation (see, e.g., Foerster, Sarte and Watson (2011)). In order to isolate the

role of this change in the shock process in driving our results, we hold all other parameters

of the model, including the investment network, fixed over time for our baseline analysis.

We find that the rising importance of sector-specific shocks, when propagated through the

investment network, quantitatively generates the declining cyclicality of labor productivity

and other business cycle changes since the 1980s. The pre-1980s sample features procyclical

labor productivity because it is dominated by aggregate TFP shocks. However, since sector-

specific shocks become more important after the 1980s, shocks to investment hubs and their

suppliers account for a larger share of employment fluctuations over that period. These shocks

drive down labor productivity because they increase aggregate employment by more than

GDP, thereby generating the declining cyclicality of labor productivity observed in the data.

Our model also generates the decline in the volatility of GDP and the increased volatility of

employment relative to GDP.
2Our investment hub shocks are reminiscent of the investment-specific technology shocks studied in, for

example, Greenwood, Hercowitz and Krusell (2000) or Justiniano, Primiceri and Tambalotti (2010). A com-
mon problem in that literature is that investment-specific shocks generate negative comovement between
investment- and consumption-producing sectors, decreasing their aggregate effect. Our model generates pos-
itive comovement through the intermediate inputs linkages in the Leontief-adjusted investment network,
which we discuss in Appendix F.
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These quantitative results are robust to a number of model extensions. First, they are

robust to allowing for trend changes in the investment network and other structural param-

eters, indicating that the rising importance of sector-specific shocks is the key force driving

these changes in business cycle patterns. Second, our results also hold in a second-order

approximation with CES production functions and preferences, which allows for richer non-

linearities (see, e.g. Baqaee and Farhi (2019)). Third, our results are robust to various forms

of adjustment frictions in labor and capital markets.

Finally, we document two new empirical results which support the role of the investment

network in accounting for the changes in business cycle patterns since the 1980s. First, we

show that the volatility of investment relative to the volatility of GDP has substantially

increased since the 1980s, consistent with the idea that sector-specific shocks to investment

suppliers play a more important role over time. Second, we show that the changes in busi-

ness cycle patterns have not occurred within individual sectors but are due to changes in

the comovement of activity across sectors. For example, the entire decline in the cyclical-

ity of aggregate labor productivity is due to changes in the covariance of value added and

employment across sectors; sector-level labor productivity is still highly procyclical within

sector. Our model matches these changing covariance patterns due to the declining impor-

tance of aggregate shocks and the sparseness of the investment network. In contrast, existing

explanations for the declining cyclicality of labor productivity largely abstract from sectoral

heterogeneity and therefore do not speak to this empirical result.

Related Literature Our paper builds on three lines of existing research. The first uses the

multisector real business cycle model to study how connections between sectors propagate

sector-specific shocks to macroeconomic aggregates. Our model’s basic structure builds on

Horvath (2000), as do many others in the literature (see, for example, Foerster, Sarte and

Watson (2011) and Atalay (2017)).3 We make three main contributions to this literature.
3Horvath (2000) varies the number of sectors N ∈ {6, 21, 36, 77} and finds that the aggregate volatility

generated by purely i.i.d. sectoral shocks declines more slowly than 1/N , which Horvath (2000) interprets as
the intermediate network “postponing” the law of large numbers. While we have found that the investment
network plays an important role in that exercise (results available upon request), it is fundamentally different
from our own, which fixes the number of sectors N = 37 at the finest level of disaggregation for which we
can parameterize the model and studies the effects of the empirical shock process. As we describe in Section
4, the key mechanism driving our results is that, among sector-specific shocks, it is primarily those to the
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First, we focus on the investment network rather than on the input-output network of inter-

mediate goods. While a number of other papers also include an investment network, they do

not analyze its role in propagating sector-specific shocks.4 Second, our new measurement of

the investment network provides an annual time series of the network, includes all of intel-

lectual property, and is consistently coded over the entire postwar sample.5 Third, we show

that shocks to investment hubs and their key suppliers decrease labor productivity and that

their rising importance over time accounts for the declining cyclicality of labor productivity

and other changes in business cycle patterns observed in the post-1980s data.

The second line of related research is the fast-growing networks literature which studies

how richer input-output networks in intermediate goods propagate idiosyncratic shocks to

macroeconomic aggregates (see, for example, Acemoglu et al. (2012), Acemoglu, Ozdaglar

and Tahbaz-Salehi (2017), Baqaee and Farhi (2019), Baqaee and Farhi (2020), Bigio and

La’o (2020), or the survey in Carvalho and Tahbaz-Salehi (2019)). In order to allow for

rich network structures, these papers use static models which abstract from investment. A

natural benchmark in these models is a strong version of Hulten’s theorem: under Cobb-

Douglas preferences/production and competitive/frictionless markets, the effect of a sector-

specific shock on real GDP is globally equal to the sector’s Domar weight, which is constant.

The literature has shown how deviations from Cobb-Douglas production (e.g. Baqaee and

Farhi (2019)) or from competitive/frictionless markets (e.g. Baqaee and Farhi (2020) or Bigio

and La’o (2020)) can break this version of Hulten’s theorem. We show that the presence of

investment also breaks Hulten’s theorem because the capital accumulation technology is not

Cobb-Douglas. Furthermore, we characterize how the investment network interacts with the

investment hubs and their key suppliers which drive aggregate employment fluctuations.
4In a recent complementary paper, Foerster et al. (2020) use the same basic model structure and show that

long-run changes in productivity growth rates at investment-producing sectors have a large impact on long-
run GDP growth by increasing capital accumulation. This analysis differs from ours in two key respects. First,
we focus on short-run business cycle fluctuations rather than long-run growth. Second, shocks to investment
producers are important in our model not because they generate large changes in the capital stock but
because they generate large changes in employment; Foerster et al. (2020) abstract from this mechanism
by taking employment (our main outcome of interest) as exogenous. In addition, like other papers in this
literature, they measure the investment network using the 1997 capital flows table (see Footnote 5).

5Foerster, Sarte and Watson (2011) and Atalay (2017) calibrate the investment network using the BEA
capital flows data from 1997, which excludes the majority of intellectual property. They are also forced to
make an adjustment to ensure their model is invertible but which artificially reduces the importance of the
network. We do not require any ad-hoc adjustment to our model.
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intermediates input-output network using our Leontief-adjusted investment network.

The final line of related literature studies how business cycle patterns have changed since

the 1980s and whether the real business cycle framework can explain those patterns. A large

subset of this literature focuses, in particular, on the declining cyclicality of labor productivity

and has suggested roughly three sets of explanations: the first is that the aggregate shock

process has changed over time (see, for example, Galí and Gambetti (2009) or Barnichon

(2010)), the second is that firms and/or workers can now more easily adjust labor inputs

in response to shocks (see, for example, Galí and Van Rens (2021), Koenders and Rogerson

(2005), Berger et al. (2012), or Bachmann (2012)), and the third is that there has been no

actual change in the cyclicality of labor productivity, but that (mis)measurement of those

objects has changed (see, for exmaple, Fernald and Wang (2016), McGrattan and Prescott

(2014), or McGrattan (2020)). This literature typically constructs models without sectoral

heterogeneity and therefore cannot speak to our empirical finding that the entire decline in

the cyclicality of labor productivity is due to changes in the covariance of activity across

sectors.6 More generally, we show that the investment network can reconcile a real business

cycle framework with key features of business cycles since the 1980s.

Road Map Our paper is organized as follows. We measure the empirical investment net-

work and document the cyclical behavior of investment hubs in Section 2. We describe our

version of the multisector real business cycle model and calibrate it to match the measured

investment network in Section 3. In Section 4, we show that shocks to investment hubs

and their suppliers have large effects on aggregate employment, driving down labor pro-

ductivity, while shocks to other sectors have small aggregate effects. In Section 5, we feed

the realized time series of sector-level productivity into the model and show that the rising

importance of sector-specific shocks generates the declining cyclicality of labor productivity

since the 1980s. We provide empirical support for this mechanism in Section 6, which shows

that those aggregate changes have not occurred within sector but are driven by changes in

sectoral comovement (consistent with our model). Section 7 concludes.
6We are aware of one paper which studies the declining cyclicality of labor productivity in a model with

sectoral heterogeneity: Garin, Pries and Sims (2018). However, Garin, Pries and Sims (2018)’s mechanism
relies on sector-specific shocks generating negative employment comovement across sectors, inconsistent with
the fact that employment comovement is positive and stable over time (which we show in Appendix H).

6



Table 1
The 37 Sectors Used in Our Analysis

Mining Utilities
Construction Wood products
Non-metallic minerals Primary metals
Fabricated metals Machinery
Computer & electronic manufacturing Electrical equipment manufacturing
Motor vehicles manufacturing Other transportation equipment
Furniture & related manufacturing Misc. manufacturing
Food & beverage manufacturing Textile manufacturing
Apparel manufacturing Paper manufacturing
Printing products manufacturing Petroleum & coal manufacturing
Chemical manufacturing Plastics manufacturing
Wholesale trade Retail trade
Transportation & warehousing Information
Finance & insurance Real estate and rental services
Professional & technical services Management of companies & enterprises
Administrative & waste management services Educational services
Health care & social assistance Arts & entertainment services
Accommodation Food services
Other services

Notes: list of sectors used in our empirical analysis. Sectors are classified according to the NAICS-based
BEA codes. See Appendix A.1 for details of the data construction.

2 Descriptive Evidence on the Investment Network

We combine three sources of sector-level data for our empirical work. We construct the

investment network using the BEA Fixed Assets and Input-Output databases for a sample

of 37 private non-farm sectors from 1947-2018 (our construction of the investment network is

described below). We use the BEA GDP-by-Industry database to obtain annual observations

of value added and employment for the same set of sectors; however, since this data only

records employment at our level of disaggregation starting in 1977, we must extend the

data back to 1948 using historical supplements to the data. Our combined dataset contains

annual observations of value added, investment, and employment for the 1948 - 2018 period.

Appendix A.1 contains details about the construction of our dataset.7

Table 1 lists the sectors available in our dataset. The main advantage of this dataset is
7We must use annual data because quarterly observations of value added, employment, and investment

are not available at the sectoral level over the entire postwar period.
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that it covers the entire postwar sample, which is necessary to analyze changes in business

cycle patterns over time. In addition, the partition of sectors provides fairly detailed coverage

of the private nonfarm economy. We cannot disaggregate the sectors much more finely in a

consistently-defined way over time and retain coverage of the entire postwar time period.

2.1 Empirical Investment Network

We define the investment network in year t as the share of the total investment expenditure

of a given sector j that is purchased from another sector i for each pair of sectors (i, j) in

the economy. While the BEA capital flows tables provides information about these pairwise

flows, those tables have three key shortcomings. First, the BEA tables are only available

for a handful of years, most recently 1997. Second, the sectoral disaggregation used in the

various BEA tables is not consistently defined over time. Third, and most importantly, the

BEA tables do not include all of intellectual property; in fact, the 1997 table is the only one

which records any intellectual property at all, but it only includes software (which was a

third of all intellectual property investment in that year).

We construct our own measurement of the investment network which overcomes these

issues. Our construction is based on disaggregated asset-level data which records the pur-

chases of 33 types of capital assets for each sector in each year. We estimate a series of

“bridge files” which allocate the production of each of these assets to a mix of producing

sectors. Appendix A.2 describes our procedure for estimating the bridge files, which follows

BEA practice as closely as possible.8

To our knowledge, our investment network is the only version of the capital flows tables

that is available in every year 1947-2018, is consistently defined over that period, and is

consistent with modern national accounting practices regarding intellectual property. We

also provide a number of alternative tables which may be of interest to other researchers.

First, we provide an investment network which also includes agriculture, federal government,

and state/local government sectors. Second, we provide an investment network that adds
8The investment expenditures data includes imported capital, so in this sense our investment network

accounts for the fact that the share of imported capital has increased over time (see House, Mocanu and
Shapiro (2017)).
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Figure 1: Heatmap of Empirical Investment Network
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Notes: heatmap of empirical investment network. Entry (i, j) computes share of total investment
expenditure in sector j that is purchased from sector i, averaged over the 1947 - 2018 sample.

an ad-hoc adjustment for estimates of maintenance investment following Foerster, Sarte and

Watson (2011) and Atalay (2017).9 Third, we provide analogous tables for capital rental ser-

vices, which may be useful in calibrating static models with capital (but without investment)

or in constructing a measure of national income along the lines of Barro (2021). Finally, we

also provide the asset-level bridge files used to construct the network.

Investment Network is Highly Concentrated Figure 1 plots a heatmap of our invest-

ment network averaged over time. Four sectors supply the majority of investment goods to

the rest of the economy: construction, which supplies the majority of structures; machinery

manufacturing and motor vehicle manufacturing, which supply the majority of equipment;

and professional/technical services, which supplies the majority of intellectual property. We
9As described in Footnote 5, Foerster, Sarte and Watson (2011) and Atalay (2017) add an adjustment to

the investment network implied by the 1997 BEA capital flows table to ensure their models are invertible
(though Horvath (2000) does not). This adjustment is meant to account for maintenance investment that
is done out of own-sector output. While there is evidence that maintenance investment are sizable (see
McGrattan and Schmitz Jr (1999)), there are not estimates of how much of maintenance investment is done
from own-sector output because maintenance is largely not recorded in the national accounts. Therefore,
we prefer not to add an artificial adjustment for maintenance investment in our baseline analysis; however,
Appendix G shows that our model results are robust to adding this correction.
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Table 2
Volatility of Activity at Investment Hubs

Investment Hubs Non-Hubs
Pre-1984 Post-1984 Pre-1984 Post-1984

σ(∆yst) 9.13% 9.18% 6.63% 5.51%
σ(∆lst) 6.14% 4.83% 3.81% 3.14%

σ(yhpst ) 5.64% 6.29% 3.91% 3.40%
σ(lhpst ) 4.08% 3.21% 2.29% 1.91%

Notes: standard deviation of sector-level value added or employment. yst is logged real value added in
sector s and lst is logged employment in sector s. σ(∆yst) and σ(∆lst) refer to the standard deviation of
the first-differences of these variables, while σ(yhpst ) and σ(lhpst ) refer to the standard deviation of the
HP-filtered variables with smoothing parameter 6.25 for annual data. “Investment hubs” computes the
unweighted average of these statistics over s = construction, machinery manufacturing, motor vehicles
manufacturing, and professional/technical services. “Non-hubs” compute the unweighted average over the
remaining sectors. “Pre-1984” performs this analysis in the 1948 - 1983 subsample and “post-1984”
performs this analysis in the 1984 - 2018 subsample. To avoid endpoint bias from the HP filter, we omit the
first and last three years of data of the entire sample in computing the HP-filtered statistics.

refer to these four sectors as investment hubs. Together, these hubs produce approximately

70% of the investment goods produced in the economy, even though they only account for

approximately 15% of value added produced, intermediate goods produced, or workers em-

ployed. The fact that this small number of hubs produce the majority of investment implies

that the investment network is highly concentrated; in fact, Appendix A.3 shows that the

investment network is two to three times more concentrated than the intermediates network

according the skewness of their eigenvalue centralities or weighted outdegrees.

Appendix A.3 analyzes how the investment network has changed over time. The primary

change has been the rising importance of professional/technical services as an investment

supplier due to the rising importance of intellectual property products. While these changes

are important for long-run trends, we focus on the average investment network for the busi-

ness cycle analysis in this paper.

Investment Hubs are Highly Cyclical Table 2 shows that employment and real value

added produced at investment hubs are more volatile over the business cycle than those at

non-hubs. We measure business cycle volatility using log-first differences or the HP filter.
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Figure 2: Correlogram of Sector-level Value Added with Aggregate Employment
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Notes: correlation of value added growth in sector s in year t+ h, ∆yst+h, with aggregate employment
growth in year t, ∆lt. Both yst+h and lt are logged and ∆ denotes the first-difference operator. The x-axis
varies the lead/lag h ∈ {−2,−1, 0, 1, 2}. “Investment hubs” compute the unweighted average of these
statistics over s = construction, machinery manufacturing, motor vehicles manufacturing, and
professional/technical services. “Non-hubs” compute the unweighted average over the remaining sectors.
“Pre-1984” performs this analysis in the 1948 - 1983 subsample and “post-1984” performs this analysis in
the 1984 - 2018 subsample.

Under either transformation of the data, the investment hubs are approximately 1.5 - 2 times

as volatile as non-hub sectors in both the pre- and post-1984 subsamples.10 For the rest of

the paper, we will use log-first differences to analyze business cycle fluctuations in order to

avoid the issues with two-sided filters explained in e.g. Hamilton (2018). However, all our

results are robust to using the HP filter, and we present those results from time to time to

help compare our results to previous studies.

Figure 2 shows that these fluctuations at the investment hubs are more correlated with

the aggregate business cycle. We compute the correlogram of sector-level real value added

growth in year t + h with aggregate employment growth in year t.11 At most horizons,

investment hubs’ value added is more correlated with aggregate employment than is non-

hubs’ value added. The difference is larger in the post-1984 subsample, consistent with the

idea that shocks to investment hubs have become more important for aggregate fluctuations
10We compute these statistics as the unweighted average across sectors in order to focus on the volatility

of the average sector. Of course, aggregate value added and employment, which we analyze in Section 5, also
depends on the share of activity in the various sectors.

11We use aggregate employment growth as our proxy for the aggregate cycle because our model predicts
that shocks at investment hubs have a larger impact on aggregate employment than GDP. Nevertheless,
Appendix B shows that similar, but slightly weaker, results hold when using GDP to proxy for the aggregate
cycle.
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over time. In addition, investment hubs more strongly lead the aggregate cycle than do

non-hubs.12

3 Model and Calibration

We now develop and calibrate a version of the multisector real business cycle model in order

to match our empirical investment network.

3.1 Model Description, Equilibrium, and Solution

The specification of the model is standard and based on Horvath (2000).

Environment Time is discrete and infinite. There are a finite number of sectors indexed

by j = {1, ..., N}, where N = 37 as in our data. Each sector produces gross output using

the production function

Qjt = Ajt

(
K

αj

jt L
1−αj

jt

)θj
M

1−θj
jt (1)

where Qjt is output, Ajt is total factor productivity, Kjt is capital, Ljt is labor, Mjt is a

bundle of intermediate goods, and αj and θj are parameters. Total factor productivity, Ajt,

follows the AR(1) process

logAjt+1 = ρj logAjt + εjt+1, (2)

where ρj is the persistence and εjt are innovations (which can be correlated across sectors).

The bundle of intermediate inputs Mjt consists of inputs produced from other sectors’

output, aggregated through the economy’s intermediates input-output network:

Mjt = ΠN
i=1M

γij
ijt , where

N∑
i=1

γij = 1, (3)

12Appendix B shows that non-hub manufacturing sectors’ behavior is more similar to the other non-hub
sectors than it is to the investment hubs. This result allays the concern that our results are driven by the
fact that two of our four investment hubs are manufacturing sectors, and that manufacturing may be more
cyclical than other sectors for reasons outside of our model. Furthermore, Appendix F shows that the extent
to which manufacturing sectors differ from other non-hub sectors is largely explained by their role as suppliers
of intermediate goods to the investment hubs, consistent with our model.
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where Mijt is the amount of sector i’s output used by sector j and γij are parameters. Con-

stant returns to scale in intermediate bundling implies that, within sector j, the parameters

γij sum to one. Each period, each sector j observes the TFP shock Ajt, uses its pre-existing

stock of capital Kjt, hires labor Ljt from a competitive labor market, and purchases inter-

mediates Mijt in competitive markets in order to produce gross output Qjt.

After production, each sector accumulates capital for the next period using a bundle of

inputs that are aggregated through the economy’s investment network. The capital accumu-

lation technology is

Kjt+1 = (1− δj)Kjt + Ijt (4)

where δj is the depreciation rate of capital in sector j and Ijt is a bundle of investment goods.

The bundle is given by

Ijt = ΠN
i=1I

λij

ijt , where
N∑
i=1

λij = 1, (5)

where Iijt is the amount of sector i’s output used by sector j and λij are parameters. Invest-

ment hub sectors i have high λij for many purchasing sectors j. We denote the investment

network matrix as Λ = [λij].

There is a representative household which owns all the firms in the economy and supplies

labor to those firms. The household’s preferences are represented by the utility function

E0

∞∑
t=0

βt

(
logCt − χ

L
1+1/η
t

1 + 1/η

)
, where Ct = ΠN

j=1C
ξj
jt and

N∑
j=1

ξj = 1 (6)

where β is the discount factor, χ controls the disutility of labor supply, η is the Frisch

elasticity of labor supply, and ξj are parameters governing the importance of each sector’s

consumption good in aggregate consumption.

Equilibrium We study the competitive equilibrium, which is efficient. Output market

clearing for sector j ensures that gross output is used for final consumption, investment, or

an intermediate in production:

Qjt = Cjt +
N∑
i=1

Ijit +
N∑
i=1

Mjit. (7)
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Labor market clearing ensures that aggregate labor demand equals labor supply:
∑N

j=1 Ljt =

Lt. We denote the price of sector j’s output by pjt, the rental rate on sector j’s capital by

rjt, and the wage rate by Wt (which is common across sectors since labor is perfectly substi-

tutable). We take the price index of the household’s consumption bundle as the numeraire.

See Appendix C for more details on the equilibrium conditions.13

Solution Method We solve the model by log-linearization. A key advantage of lineariza-

tion is that it is efficient enough to handle a model of this size (with nearly one hundred

state variables). In addition, the linear solution features certainty equivalence, so that the

covariance matrix of these innovations does not affect the decision rules. This property allows

us to simply feed the empirical time series of realized shocks into the decision rules without

needing to estimate how the entire covariance structure of shocks has changed over time.

However, linearization implies that we do not capture potential nonlinearities, such as size-

or state- dependent responses to shocks. We show that our results are robust to allowing for

nonlinearities in Appendix G.

3.2 Remarks on Simplifying Assumptions

We have made a number of simplifying assumptions in our model specification. For example,

Cobb-Douglas preferences impose that the elasticity of substitution across different sectors’

consumption goods is one, while Cobb-Douglas production technologies impose that the

elasticity between capital, labor, and intermediates are also one. We have also assumed that

there are no adjustment frictions to capital or labor, either across sectors or over time (though

we will add a simple capital reallocation friction in our quantitative analysis in Section 5).

As will become clear in Section 4, these stark assumptions allow us to clearly explain

the contribution of the investment network in propagating sector-specific shocks. In fact,

without investment, the Cobb-Douglas assumptions imply that employment is constant in
13While we assume that the household owns the capital stock, the equilibrium allocation would be identical

in the version of the model in which firms own their own capital stock and make their own investment
decisions. The reason is that, in this alternative model, the household still owns the firms, so the firms
value output in all states of the world using the household’s stochastic discount factor. All our propositions
in Section 4 also go through in this alternative model provided that one defines the shadow rental rate
r̃jt = αjθj

pjtQjt

Kjt
to be the ex-post return to capital in sector j.
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response to shocks and the effect of these shocks on real GDP is given by the sector’s Domar

weight. Hence, our model is a useful benchmark for understanding the role of investment —

and the investment network — in driving employment fluctuations. Nevertheless, we show

in Appendix G that our main results are robust to relaxing these simplifying assumptions.

We also assume that all structural parameters of the model are constant over time, so

that the only force which generates changing business cycle patterns is changes in the process

generating sector-level productivity. We show in Appendix G that our results are robust

to allowing the other structural parameters to change over time as well. We interpret this

finding as indicating that changes in these other parameters are secondary for understanding

the aggregate business cycle fluctuations that we study (though they may be important for

understanding long-run changes or other business cycle features).

3.3 Calibration

We calibrate the structural parameters of the model so that the model’s steady state matches

key empirical targets averaged over the postwar sample. A model period is one year. We

identify the N = 37 sectors in our model with those in our empirical work, and therefore

use the BEA input-output database to identify the parameters of the production function.

The share of primary inputs in production θj is given by the ratio of sector j’s value added

to its gross output, averaged over time. The labor share 1 − αj is given by average labor

compensation (adjusted for taxes and self employment) as a share of total value added.

The parameters of the intermediates input-output network γij are given by sector j’s

expenditure on intermediates from sector i as a share of its total intermediates expenditure,

averaged over the years 1947-2018. Figure 3 plots the heatmap of our calibrated intermediates

network. It has a strong diagonal element, capturing firms’ purchases of intermediates from

within their own sector, but is also richly populated off the diagonal, capturing intermediates

purchased from other sectors.14

The parameters of the investment network, λij, are equal to the share of sector j’s total
14Our measured intermediates and investment purchases account for goods that are imported from sectors

outside the U.S, but the model counterfactually assumes that all factor supply is domestically produced.
While extending our model to an open economy framework would be an interesting exercise, it is outside
the scope of this paper.
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Figure 3: Heatmap of Intermediates Network
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Notes: heatmap of intermediates input-output network γij constructed as described in Appendix D. The
(i, j) entry of each network corresponds to parameter γij , i.e. the share of intermediate expenditures by
sector j on goods produced by sector i averaged across the years 1947-2018.

investment expenditure that is purchased from sector i, averaged over time – already plotted

in Figure 1. Capital depreciation rates δj are the implied depreciation rates for each sector,

based on average annual depreciation of each capital good and the average amount of each

type of good used in sector j.

The consumption shares ξj are given by the average consumption expenditure on sector

j’s output as a fraction of total consumption expenditure. We set the discount factor to

β = 0.96. We normalize the disutility of labor parameter to χ = 1. We take the Frisch

elasticity η → ∞ to capture indivisible labor at the individual level, as in Rogerson (1988),

since we analyze fluctuations in employment rather than hours.

Appendix D shows that there is substantial heterogeneity in our calibrated parameters

across sectors. The share of intermediates 1− θj in production ranges from 70-80% in many

durable manufacturing sectors to only 20-30% in sectors like wholesale trade, retail trade,

and real estate. Labor’s share in production 1 − αj is lowest in real estate, whose primary

value added is transferring structures capital to consumers, and highest in construction, pro-

fessional/technical services, and the management of business and enterprises. Heterogeneity

16



in the depreciation rate δj across sectors captures heterogeneity in the mix of capital goods

used across sectors; structures-intensive sectors like real estate, utilities, and education have

low deprecation rates while equipment-intensive sectors like computer and motor vehicle

manufacturing have high depreciation rates. Finally, our calibrated consumption shares ξj

show that the majority of the household’s consumption basket comes from real estate, retail

trade, health care, food manufacturing, and food services.

4 Role of Investment Network in Propagating Sector-

Specific Shocks

Before turning to our quantitative analysis, we explain the theoretical mechanisms through

which sector-specific shocks affect employment, GDP, and labor productivity.

4.1 Aggregation of Sector-Level Outcomes

Our first step is to define real GDP and aggregate employment in our multisector model.

While it is straightforward to compute aggregate employment Lt =
∑N

j=1 Ljt, it is more

difficult to compute real GDP because relative prices change over time. We follow national

accounting practices and define real GDP using a Divisia index. The Divisia index begins

with the definition of nominal GDP P Y
t Yt =

∑N
j=1 p

Y
jtYjt, where P Y

t and pYjt are price indices

for aggregate and sector-level value added and Yjt is sector-level real value added (defined

in Appendix C). The Divisia index then computes real GDP growth as the log-change in

nominal value added, holding prices fixed:15

d log Yt =
N∑
j=1

(
pYjtYjt

P Y
t Yt

)
d log Yjt. (8)

In our model, sector-level value added is equal to payments to the primary inputs because

there are no economic profits. Appendix C shows that these payments depend only on TFP
15The Divisia index is defined in continuous time while our model is in discrete time. For the purposes

of simplifying exposition here, we do not take a stance on the exact discrete time approximation to the
continuous time Divisia index used, but we use a Tornqvist index in our quantitative analysis.
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and the primary inputs themselves: d log Yjt =
1
θj
d logAjt + αjd logKjt + (1 − αj)d logLjt.

Plugging this expression into the Divisia index (8) implies the following proposition:

Proposition 1. Up to first order, the impact effect of a sector-specific shock Ait on real

GDP Yt is determined by

d log Yt =
N∑
j=1

(
pjQj

P Y Y

)∗

d logAjt︸ ︷︷ ︸
≡d log TFPt

+(1− α∗)
N∑
j=1

(
Lj

L

)∗

d logLjt︸ ︷︷ ︸
≡d logLt

. (9)

where
(

pjQj

PY Y

)∗
is the ratio of sector j’s sales to nominal GDP in steady state (its Domar

weight),
(

Lj

L

)∗
is sector j’s employment share in steady state, and 1 − α∗ =

∑N
j=1(1 −

αj)
(

pYj Yj

PY Y

)∗
=
(

WL
PY Y

)∗ is the aggregate labor income share in steady state.

Proof. See Appendix E. ■

Proposition 1 shows that the effect of a sector-specific shock in some sector i, Ait, on the

Divisia index can be decomposed into the shock’s effect on aggregate TFP, d log TFPt, and

its effect on aggregate employment, d logLt (capital does not enter this expression since it is

fixed upon impact). Aggregate TFP is the sum of sector-level TFP weighted by the sectors’

steady state Domar weights
(

pjQj

PY Y

)∗
(Hulten, 1978).16 The insight of Hulten’s theorem is

that the Domar weight is a sufficient statistic for capturing how a shock to a given sector

propagates to the other sectors through the input-output network of intermediate goods.

Since Hulten’s theorem for aggregate TFP is well understood, we will instead focus our

analysis on understanding the endogenous response of aggregate employment. Under our

preference specification, equilibrium employment in sector j is given by

Ljt = (1− αj)θj
pjtQjt

Ct

. (10)

Employment is proportional to the household’s valuation of output pjtQjt

Ct
, which converts

16In principle, the reallocation of activity across sectors may also affect aggregate TFP by changing the
distribution of Domar weights across sectors. However, Proposition 1 shows that these reallocation effects
are second order; up to first order, only the steady state Domar weights are relevant for computing aggregate
GDP.
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gross sales into utility units by multiplying by the marginal utility of consumption.17

4.2 What Determines Fluctuations in Employment?

In order to understand the effect of a shock on the household’s valuation of output, and

therefore on employment, we must define two objects summarizing the intermediates network.

First, the input-output matrix summarizes the intermediates network across sectors:

Γ =


γ11(1− θ1) . . . γ1N(1− θN)

... ...

γN1(1− θ1) . . . γNN(1− θN)

 .

Second, the Leontief inverse is

L = (I − Γ)−1 = I + Γ + Γ2 + ...

As described by Carvalho and Tahbaz-Salehi (2019), the (i, j)-th element of this matrix,

ℓij, captures all the direct and indirect paths through the input-output matrix Γ by which

sector i supplies intermediate goods to sector j. The Leontief inverse is key in determining

the allocation of employment across sectors:

Proposition 2. The allocation of employment across sectors satisfies

Ljt ∝
N∑
k=1

ℓjk
pktCkt

Ct

+
N∑
k=1

ℓjk

N∑
m=1

λkm
pImtImt

Ct

. (11)

Furthermore, pktCkt

Ct
= ξk for all realizations of {Ait}Ni=1. Therefore, the fluctuations in em-

17The expression (10) uses our assumption that the Frisch elasticity of labor supply η → ∞. With a finite
Frisch elasticity, the expression becomes

Ljt = αjθj
pjtQjt

Ct

1

L
1/η
t

.

All of our results hold using this more general preference specification, but the expressions become more
complicated. Therefore, we prefer to use the η → ∞ specification to keep this discussion as simple as possible.
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ployment Ljt satisfy

d logLjt =
N∑

m=1

ω̃jmd log

(
pImtImt

Ct

)
, (12)

where ω̃jm =
∑N

k=1 ℓjkλkm

(
pImIm
pjQj

)∗
.

Proof. See Appendix E. ■

Equation (11) in Proposition 2 shows that the level of employment in a given sector j de-

pends on how that sector supplies consumption goods to the household and investment goods

to other firms, either directly or indirectly through the intermediates network. The contri-

bution to consumption is characterized by the Leontief inverse, ℓjk, times the household’s

valuation of consumption produced by all sectors k, pktCkt

Ct
. The contribution to investment

is characterized by the Leontief inverse, ℓjk, times the contribution of all sectors k in sup-

plying investment goods to other sectors m through the investment network, λkm, times the

household’s valuation of investment purchased by those sectors, pImtImt

Ct
.

Due to the household’s Cobb-Douglas preferences, its valuation of consumption across

sectors is constant over time and equal to the preference parameter ξk; therefore, shocks

which only affect the household’s valuation of consumption goods do not affect employment

– regardless of the structure of the intermediates network. Instead, these shocks generate

proportional increases in the marginal product of labor and in aggregate consumption. The

resulting income and substitution effects on labor supply exactly offset because our prefer-

ences are consistent with balanced growth in the aggregate.18

In contrast, the household’s valuation of investment goods pImtImt

Ct
fluctuates over time

because investment is a dynamic problem and the capital accumulation technology is not

Cobb-Douglas.19 Changes in the household’s valuation of investment goods generate fluctu-
18It is fairly well-known in the one-sector RBC model that employment only responds to TFP shocks

because the household would like to produce more investment goods (see the discussion in Benhabib, Rogerson
and Wright (1991), for example). Basu et al. (2013) extend that logic to a two-sector model and show that
shocks which only affect the production of consumption goods have no effect on employment, while shocks
which affect investment production have a strong effect on employment. Our results further extend this
logic to a multisector framework and show that the classification of consumption- and investment-producing
sectors interacts with the intermediates network through the Leontief inverse.

19Appendix F shows that the linearity of the capital accumulation equation is the key departure from Cobb-
Douglas which generates employment fluctuations. In particular, we show that, if the capital accumulation
equation is also Cobb-Douglas Kjt+1 = K

1−δj
jt I

δj
jt , then sector-level employment is constant over time (similar
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Figure 4: The Leontief-Adjusted Investment Network Ω
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Notes: left panel plots plots the elements of the Leontief-adjusted investment network ωij =
∑N

k=1 ℓikλkj ,
where ℓik are elements of the Leontief inverse and λkj are elements of the investment network. Right panel
plots the elements of our measured investment network λij (reproduced from Figure 1 for convenience).

ations in employment because investment weakens the income effect on labor supply. The

strength of this force is determined by ωjm ≡
∑N

k=1 ℓjkλkm, which captures the role of sector

j in supplying investment goods to sector m both directly through the investment network

and indirectly through the intermediates network.

We call the matrix of these linkages the Leontief-adjusted investment network because it

is the matrix product of the Leontief inverse with the investment network: Ω = LΛ. The left

panel of Figure 4 shows that the Leontief-adjusted investment network is less concentrated

than the raw investment network Λ (reproduced in the right panel of the figure). This

occurs because the density of the intermediates network implies that many sectors supply

intermediate goods to investment hubs; the durable manufacturing sectors near the top of

the heatmap — primary metals, fabricated metals, and computers — as well as wholesale

trade and transportation & warehousing are particularly important intermediate suppliers

of the investment hubs.
to Rossi-Hansberg and Wright (2007)). In this case, the unitary elasticity of substitution between investment
and undepreciated capital implies that investment is proportional to output, so shocks generate exactly
offsetting income and substitution effects (as they do for the household’s valuation of consumption). The
linearity of the capital accumulation equation Kjt+1 = (1−δj)Kjt+Ijt breaks this result because investment
becomes perfectly substitutable with undepreciated capital in the production of new capital.
A related special case of the model is full depreciation δj = 1. In this case, one can view capital as an
intermediate good with one period time to build. This specification also implies constant employment because
it falls within the Cobb-Douglas class.
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The Leontief-adjusted investment network Ω shapes employment fluctuations in two

important ways. First, given the fluctuations in the household’s valuation of investment

throughout the economy pImtImt

Ct
, the Leontief-adjusted investment network Ω characterizes

how employment in sector j changes in response (see equation (12)). Since Ω is fairly dense,

shocks Ait which affect the household’s valuation of investment throughout the economy m

will also generate employment fluctuations in many sectors j.

Second, the Leontief-adjusted investment network also determines which sector’s shocks

Ait generate large changes in the households valuation of investment pImtImt

Ct
. Unfortunately,

just as with the one-sector RBC model, our model does not admit a closed-form solution to

allow an analytical characterization of this mechanism. However, we can show numerically

which sectors’ shocks generate large changes and then use basic investment theory to explain

those results. In addition, Appendix F confirms that these numerical results are primarily

driven by the structure of the Leontief-adjusted investment network and not other features

of the model.20

Specifically, Figure 5 shows that shocks to the key sectors in the Leontief-adjusted invest-

ment network — both the investment hubs and their key suppliers – have large effects on

aggregate employment while shocks to other sectors do not. The figure computes a numerical

elasticity of aggregate employment with respect to a sector-specific shock Ait in each sec-

tor.21 The investment hubs have the four largest elasticities, and the next largest elasticities

are from the key suppliers to hubs identified in the Leontief-adjusted investment network:

durable manufacturing, wholesale trade, and transportation & warehousing. The remaining

sectors have very small elasticities.

By equation (12), shocks to investment hubs and their suppliers have large effects on

employment because those shocks generate large changes in the household’s valuation of

investment throughout the economy (we also confirm this fact numerically in Appendix F).

In order to understand why that is the case, consider the Euler equation for investment in
20Specifically, Appendix F shows that the Leontief-adjusted investment network is the key propagation

mechanism determining these numerical responses rather than other parameters. We sample 10,000 values
of these other parameters from uniform distributions over a wide range of the parameter space and show
that, in the vast majority of these simulations, the response of the household’s valuation of investment to a
sector-specific shock is highly correlated with that sector’s role in supplying investment goods (as measured
by its element in the Leontief-adjusted investment network ωij).

21We assume that the persistence of the shocks ρj are the calibrated values from Section 5.
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Figure 5: Elasticity of Aggregate Employment to Sectoral Shocks
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Notes: reduced-form elasticities of aggregate employment Nt to sector-specific shocks Ait. For each sector,
we simulate the model with σ(εit) = 1% shocks to that sector only. The bars plot the volatility of aggregate
employment σ(logNt) divided by the volatility of sector-specific TFP σ(logAit). Investment hubs are
highlighted in red.

some sector m:
pImt

Ct

= βEt

[
αmθm

pm,t+1

Ct+1

Qm,t+1

Km,t+1

+ (1− δm)
pIm,t+1

Ct+1

]
. (13)

The marginal benefit of investment on the right-hand side of (13) is the present value of

next period’s marginal product of capital plus the value of undepreciated capital, times the

household’s marginal utility of consumption. The marginal cost of investment on the left

hand side of (13) is equal to its price index pImt ≡ ΠN
k=1

(
pkt
λkm

)λkm

, again times the marginal

utility of consumption.

Proposition 3. Up to first order, the effect of sector-specific shocks Ait on the investment

price index for sector m, pImt, holding primary input prices fixed, is:

d log pImt = −
N∑
i=1

ωimd logAit, (14)

where ωim are the elements of the Leontief-adjusted investment network.

Proof. See Appendix E. ■
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Proposition 3 shows that shocks to investment hubs and their key suppliers Ait act

as aggregate investment supply shocks in the sense that they decrease the price index

for investment goods pImt for many sectors m. In fact, holding primary input prices fixed,

the investment price index is the sum of all sectors’ productivity weighted by the sectors’

Leontief-adjusted investment network connections ωim.22 In response to a shock to one of

the investment hubs or the key suppliers, many sectors m increase their optimal quantity

of investment Imt, and therefore the household’s valuation of their investment goods and

ultimately employment.

In contrast, shocks to other sectors act as idiosyncratic investment demand shocks in the

sense that they primarily affect the marginal product of capital in their own sector. While

these shocks may spill over to other sectors, Figure 5 shows that these spillovers are small

in terms of their impact on employment. Therefore, going forward, we focus on the role of

shocks to investment hubs and their key suppliers in driving employment fluctuations. We

define the key suppliers as durable manufacturing, wholesale trade, and transportation &

warehousing because these sectors have large weights in the Leontief-adjusted investment

network.

Relationship to Networks Literature These results are related to the recent networks

literature, which typically uses static models without investment to study how idiosyncratic

shocks affect macroeconomic aggregates. Without investment, our model implies that em-

ployment is literally constant because shocks do not affect the household’s valuation of

consumption in Proposition 2. In this case, the Domar weight is also a sufficient statis-
22If we allow factor prices to adjust, equation (14) in Proposition 3 becomes

d log pImt =

N∑
i=1

ωim (−d logAit + αiθid log rit + (1− αi)θid logWt) .

In this more general case, the contribution of sector i to the investment price index in sector m also depends
on the marginal factor costs in sector i. Movements in these factor costs may dampen the pass-through of a
productivity shock Ait to the price index pImt, but those effects are still intermediated through the Leontief-
adjusted investment network ωim. Appendix F also shows that the correlation between the elements of
the Leontief-adjusted investment network and the numerical elasticity of sector-specific investment prices
to sector-specific shocks is very high across a wide range of parameter values, suggesting that these gen-
eral equilibrium movements are of secondary importance for investment prices. Of course, our quantitative
analysis accounts for these general equilibrium movements in factor prices.
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tic for the effect of the shock on real GDP: d log Yt =
∑N

j=1

(
pjQj

PY Y

)∗
d logAjt. In addition,

the Domar weights are constant over time, so Domar aggregation is no longer a first-order

approximation but instead is globally true.

Our results in this section show that investment, and the investment network, breaks this

strong version of Hulten’s theorem in two ways. First, the Domar weight is not a sufficient

statistic for the effect of a shock on real GDP because the shock also affects employment,

and the response of employment is determined by the Leontief-adjusted investment network.

Second, the Domar weights fluctuate over time due to changes in the household’s valuation

of investment.23

4.3 Implications for Changing Business Cycles Since the 1980s

We now briefly discuss how the key insight of this section — employment fluctuations are pri-

marily driven by shocks to investment hubs and their suppliers — can qualitatively account

for a number of changes in business cycle patterns since the early 1980s; we will quantify this

mechanism in Section 5. In that section, we show that the key change in the early 1980s was

that the correlation of shocks Ait across sectors fell dramatically. We interpret this change as

reflecting the fact that the pre-1980s sample is dominated by aggregate shocks, which affect

all sectors at once, while the post-1980s sample is dominated by idiosyncratic shocks, which

affect specific sectors in isolation.

The left panel of Figure 6 plots the impulse responses of real GDP, aggregate employment,

aggregate TFP, and aggregate labor productivity to a 1% aggregate shock (increasing TFP

by 1% in each sector). The shock increases employment because it increases the productivity

of investment hubs and their key suppliers, as discussed above. The shock simultaneously

increases productivity at the other sectors, raising their production and therefore real GDP.

The effect on these other sectors’ productivity is reflected in a roughly 2% increase in ag-

gregate TFP, equal to the sum of Domar weights across all sectors in the economy. Overall,

real GDP increases by more than aggregate employment, so labor productivity rises upon
23Of course, the investment network also shapes the distribution of Domar weights in steady state. Ap-

pendix F shows that the average Domar weights of the investment hubs are comparable to the Domar weights
of other sectors.
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Figure 6: Impulse Responses to Aggregate vs. Hub + Supplier Shocks
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Notes: impulse responses of real GDP, aggregate employment, aggregate TFP, and aggregate labor
productivity to combinations of sector-specific shocks Ait. Left panel: response to a 1% increase in Ait for
all sectors i. Right panel: response to a 1% increase in Ait for the investment hubs and their key suppliers
only.

impact of the shock — consistent with its procyclicality in the pre-1980s sample.

The right panel of Figure 6 plots the same impulse responses in response to a shock

which affects only the investment hubs and their suppliers. As before, aggregate employment

increases because these sectors are the primary suppliers of investment. But unlike before,

this increase in employment is not accompanied by an increase in productivity of the other

sectors; aggregate TFP only increases by 0.75% (since these sectors’ Domar weights are

nearly 40% of the aggregate). In total, aggregate employment increases by more than real

GDP upon impact of the shock, driving down aggregate labor productivity. Section 5 shows

that this mechanism generates acyclical labor productivity in the post-1980s sample because,

as sector-specific shocks become more important in that period, it is primarily these shocks

to investment hubs and their key suppliers which drive aggregate fluctuations.24

24Appendix F computes the cyclicality of labor productivity induced by each sectors’ shocks in isolation
and shows that shocks to nearly all of the investment hubs and their suppliers generate countercyclical labor
productivity. The only exceptions are professional/technical services, wholesale trade, and transportation
& warehousing. While shocks to these sectors have a large effect on employment, they are also important
suppliers in the intermediates network; hence, they have large Domar weights, generating a larger effect on
aggregate TFP and therefore real GDP.
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4.4 Additional Results

Appendix F contains two sets of additional results. First, we relate our analysis to the lit-

erature which studies the effects of investment-specific technical shocks (e.g. Greenwood,

Hercowitz and Krusell (2000) or Justiniano, Primiceri and Tambalotti (2010)). One can

view these models as a two-sector version of our model without the intermediates input-

output network. Our model provides two main contributions to this literature. First, our

model provides a richer classification of sectors in which the correct concept of an “invest-

ment producer” is not only its direct production of investment goods but also its role in

supplying intermediate goods to the investment hubs. Second, our model also solves the

so-called “comovement” problem in this literature, which is that shocks to the investment-

producing sector do not generate positive comovement in the consumption-producing sector.

Our model generates comovement through the intermediates network, through which many

non-investment hubs indirectly produce investment goods (captured by the Leontief-adjusted

investment network).

The second set of additional results provides supporting evidence for key mechanisms

described above. Similar to Section 2, we show that the key suppliers to investment hubs are

more volatile and more correlated with the aggregate cycle than the other sectors, consistent

with the role of key suppliers in our model described above.

5 Application: Changes in Business Cycles Since 1980s

We now apply the insights developed in Section 4 to study changes in business cycle patterns

since the early 1980s.

5.1 Quantifying the Effects of Changes in Sector-Level Productiv-

ity Shocks

We assume that all parameters of the model are fixed, so the only force driving changes in

business cycle patterns over time is changes in the process generating sector-level productivity
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shocks.25 We measure sector-level productivity as the Solow residual of real gross output net

of inputs:26

logAjt = logQjt − θjtαjt logKjt − θjt(1− αjt) logLjt − (1− θjt) logMjt. (15)

Of course, changes in the measured Solow residual may reflect pure technology shocks or

changes in other non-technology forces, such as allocational efficiency or the utilization of

resources (see, for example, Basu, Fernald and Kimball (2006)). We view this exercise as a

natural first step in quantifying the role of the investment network in propagating sector-

specific shocks.27

We need to detrend sector-level TFP because our model does not feature trend growth.

However, a log-linear trend does not fit sector-level data well because sectors typically grow

and shrink in nonlinear ways. We therefore take out a log-polynomial trend in order to cap-

ture these nonlinearities. We choose degree 4 in order to strike a balance between flexibility

in the trend and not overfitting the data; Appendix D shows how various degrees fit the data

and justifies our use of a fourth-order trend. Furthermore, Appendix G shows that our main

results hold for other degrees of this polynomial trend.

The left panel of Table 3 characterizes how TFP shocks have changed over time by

performing the following statistical decomposition:

Var(∆ logAt) =
N∑
j=1

(ωjt)
2Var(∆ logAjt)︸ ︷︷ ︸
variances

+
N∑
j=1

∑
o ̸=j

ωjtωotCov(∆ logAjt,∆ logAot)︸ ︷︷ ︸
covariances

(16)

where logAjt is log TFP, ∆ denotes first differences, and ωjt is the average Domar weight
25Section 5.4 discusses robustness of our results when allowing the structural parameters of the model,

such as the investment network, to change over time as well. We interpret this finding to indicate that those
structural changes are not first-order for the specific cyclical patterns we study (though of course they may
be important for other outcomes).

26We allow the factor shares αjt to change year-by-year to ensure that changes in our measured productivity
are not driven by changes in the production technology. This choice creates a slight inconsistency with our
model, in which the factor shares are constant over time. Our main model results are virtually identical if
we instead assume the factor shares are constant when computing TFP.

27These is also a practical reason that we do not correct for utilization: consistent measures of hours-per-
worker in each sector, which are required to perform the Basu, Fernald and Kimball (2006) correction, are
not available in our data.
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Table 3
Decomposition of Shock Volatility

Measured TFP Value Added
Pre-84 Post-84 Pre-84 Post-84

1000Var(xt) 0.41 0.10 1.01 0.39
Variances 0.08 0.06 0.12 0.08

Covariances 0.33 0.03 0.89 0.31

Notes: results of the decomposition (16) in the pre-1984 sample (1948-1983) and post-1984 sample
(1984-2018). “Variances” refers to the variance component 1000

∑N
j=1(ωjt)

2Var(∆ logAjt), weighted by
sector j’s average Domar weight in the relevant subsample. “Covariances” refers to the covariance
component 1000

∑N
j=1

∑
o̸=j ωjtωotCov(∆ logAjt,∆logAot). “Measured TFP” refers to performing this

analysis on log measured TFP growth ∆logAjt. “Value added” refers to performing this analysis on log
real value added growth; in this specification, we weight by value added shares rather than Domar weights.
Totals may not appear to be exact sums due to rounding.

of sector j in the subsample (either pre- or post-1984). The volatility of aggregate TFP has

fallen by more than 70% since 1984, consistent with the “Great Moderation” of aggregate

volatility. Nearly the entire decline in aggregate volatility is accounted for by a decline in

the covariance of TFP across sectors; the within-sector variances component has declined by

much less.

We interpret this result as reflecting a decline in the variance of aggregate shocks together

with a relatively stable variance of sector-specific shocks. A helpful special case of our shock

process to develop that intuition is

logAjt = logAt + log Âjt,

where At is an aggregate shock common to all sectors and Âjt is independent across sectors.

In this special case, the only source of covariance is the aggregate shock At, so the decline in

covariances in the decomposition (16) maps directly into a decline in Var(∆At). Appendix D

performs a more general principal components analysis and yields a similar conclusion; the

volatility of the first principal component – the “aggregate shock” – declines substantially

since 1984 and accounts for the entire decline in aggregate volatility. Foerster, Sarte and

Watson (2011) and Garin, Pries and Sims (2018) make a similar argument based on the

comovement patterns of sector-level value added rather than measured productivity; the

29



right panel of Table 3 shows that our results hold for value added as well.28

We use the following procedure to feed the realized series of TFP shocks into our model.

First, we estimate the persistence ρj using maximum likelihood over the entire sample.

These parameters, along with the others parameters calibrated in Section 3, are sufficient

to compute the linearized decision rules in our model because those decision rules do not

depend on the covariance matrix of shocks. Second, given the values of ρj, we compute the

innovations to our detrended productivity shocks in the data. We simulate the decision rules

given this realized history of shocks, starting from the non-stochastic steady state in 1948.

Investment Production Frictions If we feed these measured shocks directly into our

baseline model, the model produces a counterfactually high volatility in the distribution of

investment expenditures across sectors. Table 4 measures this volatility as the average change

in sector j’s total investment expenditures as a fraction of aggregate investment expendi-

tures, E[∆| pIjtIjt∑N
k=1 p

I
ktIkt

|], or as the standard deviation of that change, σ
(

pIjtIjt∑N
k=1 p

I
ktIkt

)
. The left

and middle panels of Table 4 shows that these changes are five times larger in the model than

in the data. This result occurs because an investment-producing sector i sees its potential

customer sectors j as perfect substitutes, given the linearity of the market clearing condition

(33). Therefore, small changes in investment demand from these purchasing sectors gener-

ate counterfactually large changes in the composition of the producing sector’s customers,

and thus in the distribution of investment expenditures across sectors. In turn, this excess

volatility generates an excessively high volatility of aggregate investment to GDP.

We introduce a simple friction to bring this excess volatility in line with the data. Fol-

lowing Huffman and Wynne (1999), we modify the market clearing condition to be

Qjt = Cjt +
N∑
i=1

Mijt +

(
N∑
i=1

I−ρ
ijt

)− 1
ρ

, (17)

where ρ ≤ −1 controls the degree of the investment production friction. The baseline model
28The “Great Moderation” literature has suggested two broad interpretations of this decline in aggregate

volatility. The first is good luck; aggregate shocks have simply become less volatile over time (e.g., oil shocks
became less severe and less frequent). The second is good policy; either public policy or private inventory
management have allowed the economy to better absorb aggregate shocks. In this paper, we simply take the
decline in aggregate volatility as given without taking a stand on why it has occurred.
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Table 4
Volatility of Investment Expenditures Composition

Data Model w/o Frictions Model w/ Frictions

1000× E[∆| pIjtIjt∑N
k=1 p

I
ktIkt

|] 2.0 10.1 2.1

1000× σ
(

pIjtIjt∑N
k=1 p

I
ktIkt

)
2.7 15.1 2.7

Notes: measures of changes in the distribution of investment expenditures across sectors. “Data” refers to
value of the statistic in the data. “Model w/o Frictions” refers to the model described in Section 3. “Model
w/ Frictions” refers to the model augmented with Huffman and Wynne (1999) frictions, as described in the
main text.

from Section 3 imposed ρ = −1, corresponding to an infinite elasticity of substitution between

different purchasing sectors. When ρ < −1, investment becomes imperfectly substitutable

across purchasing sectors, capturing the idea that the types of investment goods produced

by sector i are specific to its customers j, at least in the short run.29

We set the parameter ρ = −1.04 in order to match the changes in investment composition

in Table 4. Our calibrated ρ is similar to the value used in Huffman and Wynne (1999).

While all our quantitative results going forward use this extended version of the model,

Appendix G shows that our main results are even stronger without these additional frictions

because investment expenditures and, by Proposition 2, employment are more responsive to

investment supply shocks.

5.2 Changes in Aggregate Business Cycle Patterns in Calibrated

Model

In this subsection, we show that the changing sectoral shock process quantitatively generates

a number of changes in business cycle patterns since the early 1980s. In Section 5.3, we show

that these results are driven by the structure of the investment network, consistent with the

theoretical discussion in Section 4.3.
29This reallocation friction (17) does not affect the theoretical results derived in Section 4. The only

difference is that the price of investment goods now has an endogenous component which reflects the imper-
fect substitutability of investment customers and dampens large changes in the composition of investment
production. See Appendix G for more details.
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Table 5
Changes in Business Cycle Patterns Since 1984

Data Model
Pre-1984 Post-1984 Pre-1984 Post-1984

σ(∆yt) 3.18% 1.98% 3.95% 2.42%
ρ(∆yt −∆lt,∆yt) 0.56 0.28 0.52 -0.01
σ(∆lt)/σ(∆yt) 0.83 1.01 0.90 1.03
σ(∆it)/σ(∆yt) 2.25 3.10 3.78 4.11

σ(yhpt ) 2.03% 1.24% 2.52% 1.80%
ρ(yhpt − lhpt , yhpt ) 0.52 0.14 0.53 0.01
σ(lhpt )/σ(yhpt ) 0.85 1.09 0.92 1.01
σ(ihpt )/σ(yhpt ) 2.41 3.50 3.86 4.04

Notes: business cycle statistics in the pre-1984 sample (1948 - 1983) and post-1984 sample (1984-2018).
“Data” refers to our empirical dataset. “Model” refers to model simulation starting from steady state and
feeding in realizations of measured TFP over the sample. yt is log real GDP, lt is log aggregate
employment, and it is log real aggregate investment. ∆ denotes the first difference operator, and the hp

superscript denotes the HP-filtered series with smoothing parameter λ = 6.25. To avoid endpoint bias from
the HP filter, we omit the first and last three years of data of the entire sample in computing the HP
filtered statistics.

The left panel of Table 5 documents the key changes in aggregate business cycle patterns

in the data. The top panel computes the statistics using first differences while the bottom

panel uses the HP filter (for both the data and the model).30 Using either procedure, the

volatility of GDP is approximately 40% lower in the post-1984 sample than in the pre-1984

sample — again, consistent with the well-known Great Moderation of aggregate volatility.

The cyclicality of labor productivity, measured as the correlation of GDP per worker with

GDP, switched from being procyclical in the pre-1980s to being essentially acyclical in the

post-1980s. In addition, the volatility of employment rose by approximately 1/3 relative to

GDP over this time. Appendix H shows that this rising volatility of employment accounts

for the entire decline in the cyclicality of labor productivity; intuitively, since employment
30The HP filter has the advantage of isolating business cycle frequencies, while first differences include

both high-frequency noise as well as low-frequency changes in average growth rates. The main disadvantage
of the HP filter is that its two-sided nature induces cyclical deviations that may not have been known to
agents at the time. We partially address this concern by HP-filtering both the model and data series in order
to ensure an apples-to-apples comparison. We also omit the first and last three years of data over the sample
in order to avoid endpoint bias from the HP filter. We HP-filter the aggregate series directly, rather than
aggregating the HP-filtered sector-level series. As in Section 2, we use a smoothing parameter of λ = 6.25.
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and GDP are highly correlated in both subsamples, the time series behavior of their ratio

depends on the more volatile component.31

Finally, the left panel of Table 5 shows that the volatility of investment relative to GDP

has also risen substantially since 1984. This finding is consistent with the idea that the shocks

to investment hubs and their suppliers account for a larger share of aggregate fluctuations

since 1984. To our knowledge, we are the first to note the increased relative volatility of

investment over this period.

The right panel of Table 5 shows that the model generates all of these changes in business

cycle patterns. The model matches the decline in the volatility of real GDP because TFP

shocks become less correlated over time, similar to the results in Foerster, Sarte and Watson

(2011). More novel is the fact that the model’s cyclicality of aggregate labor productivity

also falls over this period; using first differences, the cyclicality of labor productivity in

the model falls by 0.53 compared to 0.28 in the data, while using the HP filter it falls by

0.52 compared to 0.38 in the data. Consistent with this result, the standard deviation of

employment relative to GDP rises similarly in the model as in the data (see Footnote 31).

Finally, the model’s relative volatility of investment also increases over time.32

Figure 7 shows that the model also matches the timing of the decline in the cyclicality of

labor productivity. We compute the dynamics of this statistic using 14-year forward-looking

rolling windows in both the data and in our model. The two series track each other quite

closely using either first differences or the HP filter; the correlation between the model and

data’s series of rolling windows is 0.76 using first differences and 0.91 using the HP filter.

The cyclicality of labor productivity is fairly stable until the early 1980s, at which point it
31One can see the source of this result using the identity (derived in Appendix H):

Corr(∆yt,∆yt −∆lt) =
1− σ(∆lt)

σ(∆yt)
Corr(∆yt,t )√

1 + σ(∆lt)2

σ(∆yt)2
− 2 σ(∆lt)

σ(∆yt)
Corr(∆yt,∆lt)

. (18)

Since output and employment are highly correlated both before and after 1984, the decline in the cyclicality
of labor productivity is driven by the increase in the relative volatility of employment.

32The volatility of aggregate investment relative to GDP is somewhat higher in our model than in the
data, especially in the pre-1984 period. While in principle we could allow for adjustment costs to the accu-
mulation of capital within sector to match the overall level of volatility, we have found that these adjustment
costs generate counterfactually low volatility in the composition of investment spending across sectors and
counterfactually high comovement in investment fluctuations across sectors.
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Figure 7: 14-Year Forward-Looking Rolling Windows of Labor Productivity Cyclicality

Notes: 14-year forward-looking rolling windows of the cyclicality of labor productivity (e.g. 1950 data point
computes the cyclicality between 1950-1963). “Data” corresponds to aggregated version of our dataset.
“Model” corresponds to aggregated version of model simulation under measured realizations of sector-level
TFP shocks. Top panel computes the statistic using first differences: Corr(∆yt −∆lt,∆yt) where yt is log
aggregate value added, lt log aggregate employment, and ∆ denotes the first-difference operator. The
bottom panel computes the same statistic using the HP filter instead of first differences. We omit the first
three and last three years of filtered data from the HP-filtered results to avoid endpoint bias.

drops sharply following the Volcker recession. The cyclicality further declines in the 2008

financial crisis and its aftermath; by the end of the sample, it has fallen by a similar amount

in the model and in the data.

Appendix G compares the entire time series of aggregate GDP, consumption, investment,

and employment in our model to the data. The average correlation between the model

and data for these series is approximately 0.5. In addition, these key macro aggregates

strongly comove over the business cycle, which is often difficult to generate in models driven

by investment-specific shocks. However, consumption is too smooth and investment is too

volatile in our model relative to the data, as they are in the one-sector RBC model. It is not

surprising that the model does not perfectly fit each feature of the time series given that no

aggregate series were targeted in the calibration and the model does not feature the host of
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Table 6
Role of Investment Network in Driving Changing Business Cycles

Full Model Pre-84 Post-84 Identity Inv. Net Pre-84 Post-84

σ(∆yt) 3.95% 2.42% σ(∆yt) 3.16% 1.72%
σ(∆lt)/σ(∆yt) 0.90 1.03 σ(∆lt)/σ(∆yt) 0.88 0.90
Corr(∆yt −∆lt,∆yt) 0.52 -0.01 Corr(∆yt −∆lt,∆yt) 0.59 0.48

Uniform Variances Pre-84 Post-84

σ(∆yt) 1.76% 1.29%
σ(∆lt)/σ(∆yt) 0.88 1.03
Corr(∆yt −∆lt,∆yt) 0.55 0.03

Notes: business cycle statistics in the pre-1984 sample (1948 - 1983) and post-1984 sample (1984-2018). yt
is log real GDP, lt is log aggregate employment, it is log real aggregate investment, and ∆ denotes the first
difference operator. “Full model” corresponds to the model described in the main text. “Identity Inv. Net.”
assumes that sectors invest using only their own output, i.e. λii = 1 for all i and λij = 0 for all j ̸= i.
“Uniform Variances” standardizes the size of shocks to be 1% in both the pre- and post-1984 sample.

other frictions emphasized in the DSGE literature. The main takeaway from our analysis is

simply that our model fits the post-1980s data about as well as it does the pre-1980s data,

despite the changes in cyclical patterns over that period documented above.

5.3 Role of Investment Network and Sector-Specific Shocks in

Driving Changing Business Cycles

We now show that the structure of the empirical investment network is the key propagation

mechanism through which the the model generates these changes in business cycle patterns.

Specifically, we set the investment network to the identity Λ = I so that each sector only uses

its own output as an investment good. In this case, there is no concentration of investment

production at investment hubs and their key suppliers. And indeed, the top right panel of

Table 6 shows that neither the relative volatility of aggregate employment nor the cyclicality

of labor productivity significantly change since the 1980 in this case.

This comparative static is consistent with our theoretical discussion in Section 4.3, which

showed that sector-specific shocks to investment hubs and their key suppliers have different

aggregate effects than purely aggregate shocks. That discussion assumed that the size of
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aggregate vs. sector-specific shocks were the same in order to focus on the role of the invest-

ment network in propagating those shocks, but the sizes of empirical shocks that we feed in

from the data may change over time, which in principle, may drive some of our quantitative

results. The bottom left panel of Table 6 shows that this is not the case. We standardize the

size of shocks in each sector to be 1% in both the pre- and post-1984 subsamples; therefore,

the only change since 1984 is that the correlation of shocks fell by the level observed in the

data. While the overall level of volatility is obviously different in this version of the model,

the relative volatility of employment and cyclicality of labor productivity change by similar

amounts as in the baseline exercise.

Another complementary way to show that our quantitative results are consistent with

the theoretical analysis in Section 4.3 is to decompose our measured TFP shocks into aggre-

gate and sector-specific components. Table 7 performs this decomposition by identifying the

aggregate shock using the first principal component Ft of the sectoral TFP shocks εjt and

identifying the sector-specific shocks as the residual.33 We then assess the contribution of

aggregate shocks or sector-specific shocks by feeding in only the relevant shocks and setting

the remaining shocks to zero.

Table 7 shows that aggregate shocks account for the majority of employment fluctuations

in the pre-1980s period and generate procyclical labor productivity, as in the left panel of

Figure 6. However, sector-specific shocks account for the majority of employment fluctuations

in the post-1980s period and aggregate labor productivity is countercyclical in response to

these shocks, as in the right panel of Figure 6. Shocks to the investment hubs and their

suppliers drive more than 95% fluctuations since shocks to the other sectors have a small

effect on aggregate employment.
33This procedure yields the decomposition εjt = αFt + ejt, where αFt is the “aggregate shock” and eit is

the “sector-specific” shock. The results in Table 7 are not additively separable because the statistics reported
are not linear and the sector-specific shocks ejt are not orthogonal to Ft for all sectors j in both pre- and
post-1984 time periods. While this approach is not the only one to decomposing aggregate vs. sector-specific
shocks in our model, we use it because it is also commonly used in the data (see, for example, Foerster, Sarte
and Watson (2011) and Garin, Pries and Sims (2018)).
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Table 7
Decomposing the Effects of Aggregate vs. Sectoral Shocks

All Shocks Agg. Shocks Only Sectoral Shocks Only
Pre-1984 Post-1984 Pre-1984 Post-1984 Pre-1984 Post-1984

σ(∆yt) 3.95% 2.42% 3.45% 1.66% 1.67% 1.40%
σ(∆lt) 3.55% 2.48% 2.74% 1.41% 1.82% 1.61%
ρ(∆yt −∆lt,∆yt) 0.52 -0.01 0.85 0.78 -0.18 -0.28
σ(∆lt)/σ(∆yt) 0.90 1.03 0.79 0.85 1.09 1.14
σ(∆it)/σ(∆yt) 3.78 4.11 3.31 3.48 4.44 4.52

Notes: business cycle statistics in the pre-1984 sample (1948 - 1983) and post-1984 sample (1984-2018). yt
is log real GDP, lt is log aggregate employment, it is log real aggregate investment, and ∆ denotes the first
difference operator. “All Shocks” refers to the baseline model described in the main text. “Agg. Shocks
Only” refers to feeding in only the aggregate shocks (as identified following Footnote 33). “Sectoral Shocks
Only” refers to feeding in only the sector-specific shocks (again, as identified following Footnote 33).

5.4 Robustness

This subsection summarizes the exercises performed in Appendix G, which show that our

main results are robust to relaxing a number of simplifying assumptions in our model.

Structural Change So far, we have held the parameters of the economic environment

fixed in order to focus on changes in the shock process. Appendix G allows for those param-

eters to change over time, specifically: the share of primary inputs in production θjt, labor’s

share in production 1− αjt, the entries of the intermediates network γijt, the entries of the

investment network λijt, capital depreciation rates δjt, and the consumption shares ξjt.

While these parameters have indeed changed in interesting ways, Appendix G shows that

our main results are robust to allowing for these changes. We incorporate these parameter

changes in two exercises. First, we solve a transition path where agents have perfect foresight

over the trend path of parameters, while retaining uncertainty over realizations of produc-

tivity shocks using the approach developed in Maliar et al. (2020). Second, we compute the

average values of the parameters in the pre-1984 and post-1984 subsamples and simulate

the model’s moments based on estimated covariance matrices of productivity shocks and the

parameter configurations for each time period. Our main results about changes in business

cycle patterns continue to hold in both of these exercises. Of course, a full analysis of the
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process of structural change, its driving forces, and how much is expected by economic agents

at the time is outside the scope of our paper; the goal of these exercises is simply to show

that allowing for these changes does not affect our main results. We conclude that structural

change is not first-order for understanding the specific business cycle patterns we study in

this paper and have therefore abstracted from it in the main text for the sake of parsimony.

Non-Cobb Douglas Production and Preferences Appendix G also extends the model

to allow for a non-unitary elasticity of substitution between capital, labor, and intermediate

goods, as well as a non-unitary elasticity across goods in preferences. We discipline these

elasticities using the estimates from Atalay (2017) and Oberfield and Raval (2021) and

show that our quantitative results are similar in this extended model. We also solve the

extended model using a second order approximation in order to capture the rich nonlinearities

described in Baqaee and Farhi (2019). This nonlinear model produces changes in business

cycle patterns very similar our baseline analysis in the main text.

Other Robustness Checks Finally, Appendix H shows that our results are robust to a

number of other extensions. First, we vary the strength of the Huffman and Wynne (1999)

investment production frictions. Second, we allow for convex adjustment costs to capital.

Third, we allow for maintenance investment in the investment network, as discussed in

Footnote 9. Fourth, we allow for labor reallocation frictions across sectors.

6 Changes in Aggregate Cycles Driven by Changes in

Sectoral Comovement

While we believe that our explanation for the changes in business cycle patterns is a natural

one, there are many other possible explanations as well (such as those surveyed in the related

literature section). Therefore, we now document a new empirical fact which motivates a

sectoral explanation: the changes in business cycle patterns have not occurred within the

average sector of the economy, but are instead due to changes in the comovement of activity

across sectors. Hence, it would be counterfactual to explain the changes in aggregate business
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Table 8
Divergence of Aggregate and Sectoral Cycles

Aggregate Within-Sector
Data Pre-1984 Post-1984 Pre-1984 Post-1984

σ(∆yt) 3.18% 1.98% 5.42% 4.29%
ρ(∆yt −∆lt,∆yt) 0.56 0.28 0.69 0.67
σ(∆lt)/σ(∆yt) 0.83 1.01 0.76 0.81

Aggregate Within-Sector
Model Pre-1984 Post-1984 Pre-1984 Post-1984

σ(∆yt) 3.95% 2.42% 5.89% 4.93%
ρ(∆yt −∆lt,∆yt) 0.52 -0.01 0.79 0.85
σ(∆lt)/σ(∆yt) 0.90 1.03 0.52 0.43

Notes: business cycle statistics in the pre-1984 sample (1948 - 1983) and post-1984 sample (1984-2018).
“Data” refers to our empirical dataset. “Model” refers to model simulation starting from steady state and
feeding in realizations of measured TFP over the sample. yt is log real value added, lt is log employment
and ∆ denotes the first difference operator. “Aggregate” refers to outcomes for aggregate variables.
“Within-Sector” computes the statistics for each sector and then averages them weighted by the average
share of nominal value added within that sub-sample.

cycles with a change in the behavior of the average sector of the economy. We show that our

model matches this new empirical finding due to the structure of the investment network

and how it propagates the rising importance of sector-specific shocks over time. We focus

this section on the cyclicality of labor productivity and relative volatility of employment.

Sector-Level Cycles Stable Over Time Table 8 shows that within-sector business cy-

cles are stable over the postwar sample both in the data and in our calibrated model. These

within-sector business cycle statistics first compute the statistics for each sector in the econ-

omy and then average those statistics across all sectors (Appendix H shows that these findings

are robust to using various weighting schemes to compute the within-sector average and to

using the HP filter). While the volatility of sector-level value added falls somewhat post-1984,

its magnitude is about half as large as the decline in the volatility of GDP. More impor-

tantly, the cyclicality of sector-level labor productivity – the correlation of sector-level value

added per worker with sector-level value added – and the relative volatility of sector-level

employment are essentially constant across the two sub-samples. In our model, within-sector
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cycles are relatively stable because within-sector cycles are primarily driven by productivity

within that sector, not the comovement of productivity across sectors.

Changes Driven by Sectoral Comovement Since the changes in the aggregate cycle

do not occur within sector, they must be driven by changes in the covariances of activity

across sectors. We formalize this argument using the following decomposition:

Var(∆lt)

Var(∆yt)
≈ ωt︸︷︷︸

variance weight

∑N
j=1(ω

l
jt)

2Var(∆ljt)∑N
j=1(ω

y
jt)

2Var(∆yjt)︸ ︷︷ ︸
variances

+(1− ωt)

∑N
j=1

∑
o ̸=j ω

l
jtω

l
otCov(∆ljt,∆lot)∑N

j=1

∑
o ̸=j ω

y
jtω

y
otCov(∆yjt,∆yot)︸ ︷︷ ︸

covariances
(19)

where yjt is log real value added of sector j, ljt is employment of sector j, and yt and lt

are aggregate value added and employment. We focus on the rise in the relative volatility

of employment over time because it accounts for the declining cyclicality of labor produc-

tivity (see Footnote 31) but is more amenable to a variance decomposition. This decom-

position, derived in Appendix H, breaks down the variance of employment relative to the

variance of GDP into two components. The first “variances” component is the average vari-

ance of employment relative to the average variance of value added within sectors. The

second “covariances” component is the average covariance of employment across all pairs of

sectors relative to the average covariance of value added across pairs. The “variance weight”

ωt =
∑N

j=1(ω
y
jt)

2Var(yjt)/Var(yt) ensures that the averages of these ratios add up to the

ratio of aggregate variances.

The left panel of Table 9 shows that 85% of the increase in the relative volatility of

aggregate employment in the data is accounted for by an increase in the covariances term;

the within-sector variances term is relatively stable, consistent with the results in Table 8.

Appendix H shows that the changes in covariances reflect two patterns. First, the covari-

ance of value added across sectors fell in the post-1984 sample, decreasing the volatility of

GDP. Second, the covariance of employment across sectors remained comparatively stable,

stabilizing its aggregate volatility and therefore raising its volatility relative to GDP.

The right panel of Table 9 replicates this decomposition on model-simulated data and

shows that the covariance terms account for approximately 90% of the increase in the relative
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Table 9
Decomposition of Relative Employment Volatility

Data Model
Pre-84 Post-84 Contribution Pre-84 Post-84 Contribution

of entire term of entire term
Var(lt)
Var(yt) 0.68 1.04 100% 0.81 1.05 100%

Variances 0.41 0.48 15% 0.75 0.57 10%
Covariances 0.72 1.19 85% 0.82 1.15 90%

Variance Weight 0.12 0.21 0.10 0.17
( ωt =

∑N
j=1(ω

y
jt)

2Var(yjt)/Var(yt))

Notes: results of the decomposition (19) in the pre-1984 sample (1948 - 1983) and post-1984 sample
(1984-2017). “Data” refers to our empirical dataset. “Model” refers to model simulation starting from
steady state and feeding in realizations of measured TFP over the sample. “Variances” refers to the
variance component

∑N
j=1(ω

l
jt)

2Var(∆ljt)∑N
j=1(ω

y
jt)

2Var(∆yjt)
. “Covariances” refers to the covariance component∑N

j=1

∑
o ̸=j ωl

jtω
l
otCov(∆ljt,∆lot)∑N

j=1

∑
o ̸=j ωy

jtω
y
otCov(∆yjt,∆yot)

. “Variance Weight” refers to the weighting term

ωt =
∑N

j=1(ω
y
jt)

2Var(∆yjt)/Var(∆yt). “Contribution of entire term” computes the contribution of the first
term of the decomposition (19) (in the variances row) or the contribution of the second term (in the
covariances row).

volatility of employment. As in the data, this result reflects two patterns. First, the covariance

of value added falls and drives down the volatility of GDP Var(yt) because the covariance

of productivity shocks themselves falls. Second, the covariance of employment across sectors

is relatively stable, stabilizing the variance of aggregate employment Var(lt).

The investment network is crucial to generating stable employment comovement; if we

simulate the model with the identity investment network, the covariance of employment

across sectors counterfactually falls by nearly 75%, generating almost no change in the rel-

ative variance of aggregate employment (from 0.77 to 0.81). The covariance of employment

is relatively stable in our full model because employment fluctuations are primarily driven

by shocks to the investment hubs and their key suppliers. Since these sectors only represent

a small subset of all sectors in the economy, their shocks do not wash out in the aggregate

as they become less correlated over time. Appendix H provides more details about these

patterns and also shows that our model fits the covariance changes at the sector-pair level.

Appendix H contains five additional pieces of analysis of this decomposition in order to

ensure that the results are robust features of the data. First, it shows that the changes in
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covariance patterns we discuss are broad-based and not driven by outliers. Second, it shows

that the results also hold using the HP filter rather than first differences to detrend the

data. Third, it shows that the changes in covariances are reflected in changes in correlations

rather than changes in variances. Fourth, it shows that the approximation inherent in the

decomposition (19) is accurate. Fifth, it shows that the results of this decomposition also

hold for a finer 450-sector disaggregation of manufacturing in the NBER-CES database.

7 Conclusion

In this paper, we have argued that the investment network plays an important role in prop-

agating sector-specific shocks to macroeconomic aggregates. Our argument had three main

components. First, we showed that the empirical investment network is dominated by four in-

vestment hubs that produce the majority of investment goods, are highly volatile at business

cycle frequencies, and are strongly correlated with the aggregate cycle. Second, we embed-

ded this concentrated network into a standard multisector business cycle model and showed

that shocks to the investment hubs and their key suppliers have large effects on aggregate

employment, driving down labor productivity. Third, we measured sector-level productivity

shocks in the data, fed them into the model, and found that shocks to investment hubs

accounted for a large and increasing share of aggregate fluctuations, generating a number of

changes in business cycle patterns since the early 1980s.

In order to isolate the role of the investment network in our analysis, we embedded it

into a purposely simple multisector real business cycle model. A natural next step would be

to add the rich set of nominal and real rigidities which the DSGE literature has argued are

relevant for business cycle analysis. We have also kept our quantitative exercise simple by

focusing on sector-level productivity shocks measured as a simple Solow residual. While we

do not think that the role of the investment network as a propagation mechanism is specific

to productivity shocks – other non-technology shocks may have similar effects – another

next step would be to understand what drives the variation in our measured shocks and

incorporate other shocks into the model as well.
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A Construction of Dataset and the Investment Net-

work

This Appendix describes the details of our data set and our construction of the investment

network.

A.1 Data Sources

Our analysis of business cycle fluctuations uses a dataset of gross output, intermediate inputs,

value added, employment, and investment for non-government, non-farm sectors over the

1948 - 2018 sample. We define sectors using NAICS codes, resulting in the 37-sector partition

in Table 1. Data on nominal and real measures of gross output, intermediate inputs, and

value added are taken from the GDP by Industry database, while data on nominal and real

investment expenditures are from the BEA Fixed Asset database.

The main challenge in compiling this dataset is constructing consistent measures of sector-

level employment over the entire 1948 - 2018 sample. Starting in 1998, we observe sector-

level employment in NIPA Table 6.4D, which reports the total number of full-time and

part-time employees by sectors defined according to NAICS codes. Before 1998, the BEA

Industry Accounts provide historical employment data converted to NAICS codes for 1948-

1997. However, this data is only available for 17 out of the 37 sectors that we consider prior to

1977; the remaining sectors are in manufacturing, which the BEA collapses into broad durable

and non-durable sectors over this time period. Fortunately, the BEA provides disaggregated

manufacturing employment in SIC codes over this period in NIPA Tables 6.4B and 6.4C. We

convert these data to the NAICS classification using the Fort and Klimek (2018) crosswalk.

We ensure there is not a discontinuity at the 1977 breakpoint by cumulating the growth rates

from the converted data in each sector to compute the levels of employment in the pre-1977

period rather than relying on the levels in the raw data.
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Table A.1
Investment Flows Table Visualization

Investment Purchasers
Mining Utilities Construction · · · Total Production

Investment
Producers

Mining
Utilities

Construction
...

Total Expenditures

A.2 The Investment Network

Our investment network records the share of new investment expenditures of sector j that

were purchased from sector i for each pair of sectors (i, j) and for each year t in our sample.

While the BEA capital flows tables provide some relevant information in some years, those

tables are limited in three key ways for our analysis. First, they are only available for seven

of the 72 years from 1947-2018: 1963, 1967, 1972, 1977, 1982, 1992 and 1997.34 Second, they

are not consistently defined over time because they use different vintages of SIC or NAICS

codes. Finally, and most importantly for our analysis, the BEA tables do not include all of

intellectual property; in fact, the 1997 table is the only one with any intellectual property,

but it only has software (not R&D investment or artistic originals). To our knowledge, our

investment network is the only version of the capital flows tables that is consistent with

modern national accounting practices regarding intellectual property.35

We construct our investment networks in order to overcome these limitations, but other-

wise try to follow the BEA methodology as closely as possible. To help explain our approach,

Table A.1 visualizes the investment flows table, whose (i, j)th entry records the total invest-

ment expenditures by sector j purchased from sector i in a given year. Summing across

columns for each row in this table generates total production of investment by each sec-

tor, while summing across rows for each column generates total investment expenditures for

each sector. The investment network simply divides each column j of this table by total
34Only the 1982, 1992, and 1997 tables are currently published on the BEA website, but older tables can

be obtained from archived issues of the Survey of Current Business.
35We have found that the presence of intellectual property is the key difference between the BEA 1997

capital flows table and our measured investment network in that year. Specifically, intellectual property makes
up more than a quarter of total investment spending in the sectors for which our network is significantly
different from the BEA’s capital flows table.
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expenditures in that sector in order to compute expenditure shares.

We construct the investment network in three steps: (i) separately construct the in-

vestment flows tables for residential investment, non-residential structures, non-residential

equipment, and intellectual property, (ii) aggregate those four investment flows tables to

total investment, and (iii) rescale them to compute the aggregate investment network. Steps

(ii) and (iii) are straightforward matrix operations, so we focus this appendix on explaining

how we perform step (i).

Unfortunately, there are no publicly available data on the pairwise investment flows

between producers and purchasers necessary to fill in each element of Table A.1. Instead, we

estimate these pairwise flows using the following data which the BEA does provide:

(i) Total investment expenditures by sector for each year from Table 3.7 of the Fixed

Assets data (the “total expenditures” row in Table A.1).

(ii) Total investment production by sector for each year from the annual use tables from

the Input-Output database (the “total production” column in Table A.1). Before 1997,

these tables separately record the total production of structures (both residential

and non-residential), equipment (both residential and non-residential), and intellectual

property. After 1997, the tables record the total production of residential investment,

non-residential structures, non-residential equipment, and intellectual property.

(iii) Aggregate residential structures and residential equipment expenditures for each year

from NIPA Tables 5.4.5 and 5.5.5. Because we assume that the real estate sector is the

sole purchaser of residential investment – following the BEA’s methodology – there is

no need for detailed residential investment expenditure data by sector.

(iv) Sector-level investment expenditure on 33 different types of assets for each year:

residential structures, residential equipment, two types of non-residential structures

(mining and all other), four different intellectual property assets, and 25 different

equipment assets. We construct this data from the expenditures on residential struc-

tures and equipment described in point (iii) above and detailed data for Fixed Assets

by Industry, which provides expenditures on the other types of assets (available at

https://apps.bea.gov/national/FA2004/Details/Index.htm).
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(v) Sector-level detail on the production of individual equipment assets for the years 1997-

2018 (available at https://www.bea.gov/products/industry-economic-accounts/

underlying-estimates), and 1987 and 1992 in SIC codes (available at https://

www.bea.gov/industry/historical-benchmark-input-output-tables), which we

convert to NAICS codes using the crosswalk in Fort and Klimek (2018).

Our approach primarily utilizes asset-level expenditure data to estimate the individual

entries in Table A.1. We estimate those pairwise investment flows as

Iijt =
A∑

a=1

ωiatI
exp
ajt , (20)

where Iijt is the (i, j)th element of the investment flows table in year t, Iexpajt is expenditures

by sector j on capital asset a in year t, and ωiat represents the fraction of capital asset a

produced by sector i in year t.36 The key assumption in equation (24) is that the the mix of

sectors producing a given asset a is the same for all sectors j which purchase that asset, i.e.

that ωiat is independent of the purchasing sector j. The BEA also makes this assumption in

constructing their capital flows tables.

The main challenge in our measurement procedure is to estimate the collection of ωiat

– which is called a bridge file – across assets a, sectors i, and years t. The remainder of
36To be consistent with input-output methodology, our investment network represents expenditures on new

investment, not used or scrap transactions. However, the Fixed Assets investment expenditures data used
to construct Iexpajt in (24) does include net purchases of used assets, which often enter recorded investment
expenditure as a negative value. Thus, the reported expenditures may understate total expenditures on new
assets. In terms of measured investment expenditures, the addition of net used transactions is only a concern
for equipment assets; for structures and intellectual property, net used transactions are negligible. We adjust
total investment spending from the Fixed Assets data to eliminate used and scrap transactions as follows:

• For all equipment assets aside from autos, we scale up investment expenditures uniformly across
sectors in order to match the total production of new assets. In 1997-2018, the scaling factor ensures
that total expenditures equals total production of that asset as reported in sector-level detail on
the production of individual equipment assets. Before 1997, we use the median scaling factor from
1997-2018. Overall, this correction is non-negligible only for trucks and aircraft.

• For autos, we scale up expenditures on autos in the rental/leasing sector in order to be consistent
with the observation in Meade, Rzeznik and Robinson-Smith (2003) that net sales of used autos are
primarily from that sector to private households (the rental/leasing sector is part of real estate in our
37 sector partition). We again choose the scaling factor to ensure that total expenditures on autos
equals total expenditures in 1997-2018 (when production data is available), and choose the median
scale factor from that period for the pre-1997 data (when the production data is not available).
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this subsection describes how we construct these annual bridge files ωiat separately for non-

residential structures, intellectual property, residential investment, and equipment.

Non-Residential Structures

We assume that all non-residential structures are produced by the construction sector except

for mining structures, which we assume are produced by the mining sector. Therefore, for

a = non-residential non-mining structures, we set ωiat = 1 if i = construction and zero

otherwise. For a = non-residential mining structures, we set ωiat = 1 if i = mining and zero

otherwise. This allocation rule is consistent with how the BEA constructs the capital flows

tables.37

Intellectual Property

We have data on four types of intellectual property assets: prepackaged software, own and

custom software, research and development, and artistic originals. We allocate the production

of these assets to sector i based on the BEA practices described in McGrattan (2020).38

(i) We assume that own and custom software is produced by the professional/technical ser-

vices sector, i.e. for a = own and custom software, ωiat = 1 if i = professional/technical

services and zero otherwise.

(ii) We assume that R & D investment is also produced by the professional/technical

services sector, i.e. for a = R & D investment, ωiat = 1 if i = professional/technical

services and zero otherwise.

(iii) We assume that artistic originals are produced by the information sector (which in-

cludes radio & TV communication and motion picture publishing) and the arts &
37In 1997-2018, the construction and mining sectors produce 99.9% of non-residential structures investment

net of brokers’ commissions on structures (which are excluded from our investment network following the
BEA’s methodology for the 1997 capital flows table).

38McGrattan (2020) estimates a version of the investment network for the year 2007 that includes intellec-
tual property products. However, McGrattan (2020) argues for an allocation of the production of intellectual
property products different from current practice by the BEA. While we are sympathetic to those arguments,
we chose to follow BEA practice in the spirit of following their approach as closely as possible throughout
our analysis.
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entertainment services sector. We assume that artistic originals is the only type of in-

tellectual property produced by the arts & entertainment sector, and therefore estimate

its production of artistic originals as its total production of intellectual property from

the Input-Output tables. Hence, for a = artistic originals and i = arts & entertain-

ment, we set ωiat =
Iprodait∑N
j=1 I

exp
ajt

where Iprodait is the total production of intellectual property

by i = arts & entertainment and
∑N

j=1 I
exp
ajt are total economy-wide expenditures on

artistic originals. We then set ωiat = 1 − ωi′at for i = information (where i′ = arts &

entertainment) and ωiat = 0 for all other i.

(iv) Finally, we assume that all pre-packaged software is produced by the information

sector. However, we must also take into account the fact that the wholesale trade,

retail trade, and transportation & warehousing sectors play a role in delivering new pre-

packaged software to customers (these delivery expenses are called margin payments).39

We compute the margin payments on pre-packaged software as the total production of

intellectual property for those sectors as recorded in the Input-Output Tables. Hence,

for a = pre-packaged software and i = information, we set ωiat =
Iprodait∑N
j=1 I

exp
ajt

where i ∈

{wholesale trade, retail trade, transportation & warehousing } and
∑N

j=1 I
exp
ajt is total

economy-wide expenditure on pre-packaged software. We then set ωiat = 1−
∑

k ωakt for

i = information and k ∈ {wholesale trade, retail trade, transportation & warehousing}.

Finally, we set ωiat = 0 for all other sectors i.

Residential Investment

Residential investment is the sum of residential structures and residential equipment (such as

appliances or other consumer durables owned by landlords and included in residential leases).

As described above, the BEA directly reports the total production of residential investment

by sector in the Input-Output Tables between 1997-2018. However, that production data

also includes margin payments on used residential structures transactions, which we need to
39We assume that pre-packaged software is the only intellectual property product with margin payments

because that is the case in the benchmark 2007 and 2012 input-output tables, which has detailed observa-
tions on margin payments (available at https://www.bea.gov/products/industry-economic-accounts/
underlying-estimates).
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eliminate from our investment network. Our approach to estimating these margin payments

for the 1997-2018 period depends on the sector:

(i) We assume that some sectors – real estate, finance/insurance, and legal services (part of

professional/technical services) – only produce margin payments on residential struc-

tures and not on residential equipment.40 For these sectors, we assume that 13.2%

of their production of residential structures corresponds to margin payments on new

transactions, based on the estimated fraction of real estate broker margins that were

for new residential structure investment (as used in the 1997 BEA capital flows data

and reported in Meade, Rzeznik and Robinson-Smith (2003)).

(ii) Other sectors produce margin payments for both residential structures and residential

equipment (wholesale trade, retail trade, and transportation & warehousing). For these

sectors, we estimate their total margin payments as the sum of their total production

of residential equipment (corresponding to margin payments on residential equipment,

observed in detailed equipment production data) and 13.2% of their production of res-

idential structures (corresponding to margin payments on new residential structures,

assumed to be the remainder of these sectors’ total production of residential invest-

ment).

Unfortunately, the BEA does not separately report production of residential investment

by sector prior to 1997. Our procedure to estimate residential investment in this period

depends on the sector:

(i) We assume some sectors (wood products manufacturing, finance/insurance and pro-

fessional/technical services) produce residential structures but do not produce non-

residential structures or residential equipment in the post-1997 data.41 We therefore

estimate these sectors’ total production of residential investment as their reported to-

tal production of structures pre-1997. We then eliminate margin payments on used

transactions following the same procedure described in the previous paragraph.
40This assumption is validated by the fact that these sectors do not contribute to the production of total

equipment (residential plus non-residential equipment) in the pre-1997 production data.
41This assumption is validated by the fact that these sectors report zero production of any equipment

investment pre-1996 and no production of non-residential structures post-1997 in the Input-Ouput tables.

54



(ii) We estimate the other sectors’ production of residential investment using the following

procedure.

• Residential structures: in the 1997-2018 period, we can infer sector-level produc-

tion of residential structures directly in the Input-Output Tables (given that we

separately observe production of residential equipment in the detailed data de-

scribing production of equipment over this period). In the pre-1997 period, when

we do not observe production, we estimate it as the average share of residential

structures produced by that sector in the 1997-2018 data times the aggregate

spending on residential structures in a given year t < 1997.

• Residential equipment: we follow a similar procedure as for residential structures;

given observed sector-level production of residential equipment for later years,

we use the average share produced by each sector times aggregate spending on

residential equipment. Because we have detailed data on the sectoral production

of residential equipment for the years 1987 and 1992 as well, for years t < 1987,

we use 1987 data on the shares of sectoral production times the aggregate time

series for residential equipment spending. For years between 1987 and 1992, we

use a moving average of the residential equipment production shares from the

1987 and 1992 bridge files, and for years between 1992 and 1997, we use a moving

average of the data in 1992 and 1997.

Since these procedures define the bridge files ωiat recursively, we do not write out their

formulas here.

Non-Residential Equipment

Constructing the bridge files for equipment assets is the most involved task because there

are 25 detailed types of equipment assets reported in the Fixed Asset data. We describe our

procedure separately for three time periods which have different data availability from the

BEA:

(i) 1997 - 2018: The BEA already publishes detailed data on the production of individual
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equipment assets by each sector, i.e. we observe ωiat from the data directly.

(ii) 1987 and 1992: The BEA publishes bridge files for each of these assets in 1987 and

1992, but the sectors correspond to SIC codes rather than NAICS codes. Therefore,

we convert these bridge files from SIC to NAICS using the Fort and Klimek (2018)

crosswalk.42

(iii) Remaining years: in the years for which we have no publicly available bridge files, we

interpolate the existing bridge files and re-scale the interpolation so that it matches

the total production of equipment investment by sector from the input-output data.

To understand our procedure, first note that the total production of equipment capital

by sector i is:

Iprodit =
∑
a

ωiatI
exp
at , (21)

where Iexpat is total expenditures on equipment asset a in year t (from the Fixed Assets

data), Iit is the production of all equipment assets by sector i (from the input-output

data), and ωiat is our bridge file to be estimated.

We initialize our estimate of the bridge file, ω̂iat, as either the bridge data from the

last available year or a moving average of the two nearest bridge files. This estimate

ω̂iat may not satisfy the relationship (21) given our observations of Iprodit and Iexpat .

Let αit =
Iprodit∑

a ω̂iatI
exp
at

denote the ratio of true equipment production of sector i to its

production implied by the bridge file estimate. We use αit to arrive at our final estimate

of the bridge file:

ωiat =
αitω̂iat∑N
j=1 αjtω̂jat

. (22)

Equation (22) ensures that the total investment production in each sector i implied by

the bridge file is equal to total investment production in the data. The key assumption
42If the converted bridge file implies that a sector produces an equipment asset that the sector is not

observed to produce in the detailed equipment production data in the years 1997-2018, we modify the
conversion of NAICS to SIC sectors such that this sector does not produce that good in the final converted
bridge file. However, these older bridge files only contain limited detail on margin sectors, making careful
conversion to NAICS sectors infeasible. In order to ensure that we do not have a discontinuous break in
margin payments by each sector at 1997, we take the total reported margins for each asset in these older
bridge files and multiply them by the share of margins produced by each margin sector for that asset from
the detailed equipment bridge files in 1997-2001.
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is that the production of assets a by sector i always occur in proportion to ω̂iat.

Additional Networks

Alternative sectoral disaggregation While we use a 37-sector disaggregation in the

main text, we can also incorporate the agriculture, state/local government, and federal

government sectors. The agriculture sector can be incorporated following the same steps

as above without modification. The government sectors can be incorporated by using the

Input-Output tables directly because investment by federal and state/local governments is

a final use. We do not incorporate these sectors in the main text in order to focus on the

private nonfarm economy.

We can also disaggregate the mining and real estate sectors more finely than in the main

text. In particular, we can split the mining sector into oil & gas extraction, support activ-

ities for mining, and other mining, and we can split the real estate sector into real estate

and rental/leasing services. We do not use these additional sectors in our baseline analysis

because the way investment purchases and expenditures are allocated across these sectors is

unusual (e.g., most of investment purchases by mining are produced by the support activ-

ities for mining sector, and the purely real estate sector is largely owner-occupied housing

imputations). However, our results are robust to using this more detailed partition of sectors

for the private non-farm economy.

Capital Rental Services We also construct a capital rental services network, defined as

the fraction of capital rental service expenditures by sector j, RjtKjt, purchased from all

other sectors i in the economy in year t. This rental services network may be useful for at

least two reasons. First, it is consistent with the national accounting procedure described in

Barro (2021), which constructs a measure of national income whose present value equals the

present value of consumption over time. Second, the rental services network may be used to

incorporate sectoral linkages in capital services in a static model.

As with the investment network, the rental services network combines rental expenditures

of sector j on asset a, Ra
tK

a
jt, with bridge files to infer from which sectors those assets were

purchased. We compute Ra
tK

a
jt using data on the nominal capital holdings of each sector j
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for each asset a in each year t, P a
t K

a
jt from the BEA Fixed Assets data.43 We then combine

that series with a time series for the real rental rate Ra
t

Pa
t
, which we construct following the

approach in Karabarbounis and Neiman (2019):

Ra
t

P a
t

=
1 + τxt
1− τ kt

[(
(1 + τxt−1)P

a
t−1

(1 + τxt )P
a
t

)
(1 + (1− τ kt )rt)− (1− δat )−

τ kt δ
a
t

1 + τxt

]
(23)

where τxt is the tax rate on investment, τ kt is the tax rate on capital income, rt is a measure

of the real rate of return on capital, P a
t is the price of a new unit of capital (investment)

of asset type a, and δat is the depreciation rate of asset a. We follow the same broad steps

as Karabarbounis and Neiman (2019) (on their more aggregated data) in order to measure

these objects:

(i) Real interest rate rt: measured as the nominal rate of return on 10 year Treasuries

net of expected inflation (measured as a five year moving average of observed PCE

inflation) plus a 3% risk premium (which avoids negative values of the rental rate).

(ii) Price P a
t : directly observed in NIPA tables 5.4.4, 5.5.4, and 5.6.4.

(iii) Taxes τxt and τ kt : directly from McDaniel (2007), which have been updated through

2017.

We then take a seven-year moving average of the real rental rate Ra
t

Pa
t
in order to smooth out

high-frequency variations; Karabarbounis and Neiman (2019) use a five-year moving average,

which leaves more noise in our disaggregated data.

We use the same bridge files ωiat constructed above to allocate the production of new

rental services for asset a to various sectors i. Our key assumption is that the composition of

sectors which produced the existing capital asset a in the past is the same as the composition

of sectors which produce new capital. This assumption may fail if the sectors producing that

particular capital asset have substantially changed over time, but that is unlikely to be

an important issue for two reasons. First, we use a fairly detailed partition of capital assets

whose production patterns have not changed much over time. For example, for our estimated
43We assume that the rental rate of a given capital asset is specific to the asset a, not to the sector j

renting it. This assumption is consistent with BEA data showing that the price of capital assets is almost
identical for the same asset across sectors.
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equipment bridge files, the average correlation of the distribution of sectors that produce each

asset in 1947 and the distribution of sectors that produce that asset in 2018 is 0.91. Second,

the assets for which production has changed the most also have the highest depreciation

rates, implying that our bridge files for new investment correspond to a large fraction of the

existing capital stock as well. That said, we will also provide the time series of each of our

bridge files so that other researchers can relax this assumption and explicitly cumulate the

pairwise purchases of investment over time using the perpetual inventory method.44

Given this modular approach, other researchers can construct rental services by asset in

different ways — for example, reflecting a different formulation of the rental rate — and

combine them with our bridge files to build their own rental services network. We provide

networks with and without taxes (given that our model does not include taxes) as well as a

network using rental rates net of depreciation.45 Figure A.1 plots the heatmap of our gross

rental services table without taxes and shows that it is very similar to our investment network

considered in the main text; the network with taxes and the network using net rental rates

is also similar.

A.3 Additional Analysis of Investment Network

This subsection presents two pieces of additional analysis of the investment network refer-

enced in Section 2 of the main text.

Changes in Network Over Time Figure A.2 compares the heatmaps of the investment

network in the pre- and post-1984 samples. Our four investment hubs are the primary sup-

pliers of investment goods in each subsample. The main difference across subsamples is that

professional/technical services accounts for a larger share of investment production in the

post-1984 period.
44We do not make a correction for used goods when building the rental services tables because this

correction is significantly more complex when considering the stock of all capital and not the period flows
of investment.

45In the case of the net rental services matrix, net rental rates are measured without taxes, with Ra
t

Pa
t

=[(
Pa

t−1

Pa
t

)
(1 + rt)− 1

]
. We add an additional two percentage point risk premium and smooth changes in asset

prices, Pa
t−1

Pa
t

, using a five year moving average in order to avoid negative net rental rates.
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Figure A.1: Heatmap of Empirical Rental Services Network
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Notes: heatmap of empirical gross rental services network (without taxes). Entry (i, j) computes share of
total rental expenditures by sector j that are produced by sector i, averaged over the 1947 - 2018 sample.

Figure A.3 compares the heatmaps of the equipment and intellectual property products

networks in the pre- vs. post-1984 sample (the residential investment and non-residential

structures networks do not substantially change over time). The left panel shows that com-

puting manufacturing and professional/technical services becomes a larger supplier of non-

residential equipment over time while the information sector becomes a larger supplier of

intellectual property products, both of which reflect the rising importance of IT.

To study the time series of the key changes in the investment network, Figure A.4 sum-

marizes the importance of each sector as a supplier of investment goods by the weighted

outdegree of that sector. The left panel shows that our four investment hubs are systemati-

cally important suppliers of investment goods over the entire sample. The rise of intellectual

property products over time implies that professional/technical services, which produces the

majority of these products, has become relatively more important over time while the other

three hubs have become relatively less important. The right panel shows that the non-hub
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Figure A.2: Heatmaps of Investment Network, Pre/Post 1984
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Notes: Heatmaps of the investment network λij are constructed as described in the main text. The (i, j)
entry of each network corresponds to parameter λij , i.e., the amount of sector i’s good used in sector j.
The pre-84 network corresponds to the years 1947-1983 and the post-84 network corresponds to the years
1984-2018.
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Figure A.3: Heatmaps of Equipment and Intellectual Property Investment Networks,
Pre/Post 1984
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Notes: Heatmaps of the non-residential equipment and intellectual property investment networks are
constructed from the bridge files as described in Appendix A.2. The pre-84 network corresponds to the
years 1947-1983 and the post-84 network corresponds to the years 1984-2018.

sectors are relatively unimportant suppliers over the entire sample.46

A natural question is to what extent the time-series variation in the network is driven by

changes in our estimated bridge files. To answer this question, recall that we construct the

pairwise flows of investment expenditures between sectors i and j in year t as

Iijt =
A∑

a=1

ωiatI
exp
ajt , (24)

where Iexpajt is expenditures by sector j on capital asset a in year t (provided by the BEA)

and ωiat is the fraction of capital asset a produced by sector i in year t (our estimated
46The biggest exceptions are computers and electronic machinery manufacturing, information, and whole-

sale trade, all of whose outdegrees increase substantially over the sample due to the rise of IT.
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Figure A.4: Weighted Outdegree of Hubs and Non-Hubs
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Notes: Time series of the sum over columns for the rows of the investment network corresponding to the
four investment hubs: construction, machinery manufacturing, vehicles manufacturing, and
professional/technical services.

“bridge files”). Recall that the investment network simply normalizes these pairwise flows of

investment expenditures Iijt by the total investment expenditure of sector j in year t.

Equation (24) shows that the time-variation in the pairwise investment flows Iijt can

come from one of two sources: variation in our estimated bridge files ωiat or variation in

investment expenditures Iexpajt . We assess the contribution of each of these components by

computing two counterfactual investment flows series:

Îωijt = ωiatI
exp

aj (25)

Îexpijt = ωiaI
exp
ajt , (26)

where Iexpaj is the expenditure of sector j on asset a averaged over time and ωia is the bridge

file for sector i producing asset a averaged over time. Îωijt in equation (25) computes the
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Table A.2
Sources of Variation in Investment Network

Avg. variance (×1000) Bridge files only Expenditures only
Full Time Series 6.66 5.94 (89%) 0.26 (4%)
Business Cycle (% deviation) 9.37 7.84 (84%) 0.44 (5%)

Notes: First row is the average variance of the raw time series of measured investment flows (Iijt) and
counterfactual series where time variation is only present in bridge files (Îωijt) or investment expenditures
(Îexpijt ). Second row is the average variance of each of those series after being logged and HP filtered with
parameter 6.25. Each variance is weighted by the average value of that element in the investment network.
Investment network elements which take on a zero at any point in the time series are omitted; the first row
results are insensitive to inclusion of these, however. Percentages do not sum to 100% since (1) the
underlying relationships are not linear, so the decomposition is not exact, and (2) we do not consider
covariance terms.

implied variation in Iijt if investment expenditures were held fixed over time and therefore

captures the contribution of time-variation in our estimated bridge files. Conversely, Îexpijt in

equation (26) computes the implied variation in Iijt if the bridge file were held fixed over

time, capturing the contribution of time-variation in investment expenditures. While these

two objects do not sum up to the total investment flows Iijt, their relative variation is a

useful metric for quantifying the two sources of variation.

Table A.2 shows that the vast majority of time-variation in our estimated investment

flows Iijt is driven by variation in investment expenditures Iexpajt , not variation in the bridge

file ωiat. The top row computes the weighted average of variances of the counterfactual series

Îωijt and Îexpijt compared to the variance of the total series Iijt, while the bottom row first

detrends the data using a log HP filter in order to focus on the business cycle fluctuations.

In either case, the variance coming from our estimated bridge files, Îωijt, is only 5% of the

variance in the overall capital flows series Iijt.47 Hence, the time-series variation in our

estimated investment network parameters is not driven by variation in our estimated bridge

files but rather variation in the investment expenditures reported by the BEA.48

47The average variance of the business cycle component is higher than the full time series because we
compute the business cycle component as the log-deviation from trend, while the full time series computes
variance of the level.

48This result also holds if we first compute the fraction of variance explained within each sector-pair for
investment flows and then average that fraction across sector pairs.
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Table A.3
Skewness of Investment and Intermediates Networks

Eigenvalue Centrality Weighted Outdegree
Investment network 3.32 2.70
Intermediates network 1.42 0.68

Notes: Eigenvalue centrality is defined as the eigenvector associated with the largest eigenvalue of the
matrix. The weighted outdegree is defined as the sum over columns of the network matrix. Skewness of
each of these centrality measures is computed as the sample skewness.

Concentration of the Investment Network Table A.3 shows that the investment net-

work is significantly more concentrated than the intermediates input-output network, mea-

sured using two metrics of network skewness.49 Carvalho and Tahbaz-Salehi (2019) discuss

both of these metrics; intuitively, they compute a measure of centrality for each sector, which

determines how important of a supplier it is to other sectors, and then compute the skewness

of these centrality measures across sectors. A highly skewed set of centrality measures indi-

cates that the network is dominated by a small number of highly important sectors. Across

both measures of centrality, the investment network is on average roughly two to three times

more skewed than the intermediates input-output network.

B Additional Results on Descriptive Evidence of In-

vestment Hubs

This appendix present three pieces of additional analysis regarding the cyclical behavior

of investment hubs referenced in Section 2 in the main text. First, Figure B.1 presents

the correlogram between sector-level value added and aggregate GDP rather than aggregate

employment as in Figure 2. Consistent with Figure 2, hubs are more correlated with aggregate

GDP than are non-hubs, and this difference between hubs is larger in the post-1984 sample.

Second, we address the concern that the empirical behavior of investment hubs is driven

by the fact that two of four hubs are manufacturing sectors, and that manufacturing may
49We describe our measurement of the intermediates network, which follows standard procedure, in Section

3.
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Figure B.1: Correlogram of Sector-level Value Added with Aggregate GDP
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Notes: correlation of value added at sector s in year t+ h, ∆yst+h, with aggregate employment in year t,
∆yt. Both yst+h and yt are logged and ∆ denotes the first-difference operator. The x-axis varies the lead/lag
h ∈ {−2,−1, 0, 1, 2}. “Investment hubs” compute the unweighted average the value of these statistics over
s = construction, machinery manufacturing, motor vehicles manufacturing, and professional/technical
services. “Non-hubs” compute the unweighted average over the remaining sectors. “Pre-1984” performs this
analysis in the 1948 - 1983 subsample and “post-1984” performs this analysis in the 1984 - 2018 subsample.

Table B.1
Volatility of Activity, Hubs vs. Manufacturing

Investment Hubs Non-Hubs Non-Hub Manuf.
Pre-84 Post-84 Pre-84 Post-84 Pre-84 Post-84

σ(∆yst) 9.13% 9.18% 6.63% 5.51% 9.14% 6.97%
σ(∆lst) 6.14% 4.83% 3.81% 3.14% 5.12% 3.77%

Notes: standard deviation of business cycle component of sector-level value added or employment. yst is
logged real value added in sector s, lst is logged employment in sector s, and ∆ denotes the first difference
operator. “Investment hubs” compute the unweighted average the value of these statistics over s =
construction, machinery manufacturing, motor vehicles manufacturing, and professional/technical services.
“Non-hubs” compute the unweighted average over the remaining sectors. “Non-hub manufacturing”
computes the average over manufacturing sectors other than machinery and motor vehicles. “Pre-1984”
performs this analysis in the 1948 - 1983 subsample and “post-1984” performs this analysis in the 1984 -
2018 subsample.
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Figure B.2: Correlogam of Sector-level Value Added with Aggregate Employment, Hubs
vs. Manufacturing
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Notes: correlation of log real value added in sector s in year t+ h, yst+h, with log aggregate employment in
year t, lt. ∆ denotes the first difference operator. The x-axis varies the lead/lag h ∈ {−2,−1, 0, 1, 2}.
“Investment hubs” compute the unweighted average the value of these statistics over s = construction,
machinery manufacturing, motor vehicles manufacturing, and professional/technical services. “Non-hubs”
compute the unweighted average over the remaining sectors. “Non-hub manufacturing” computes the
average over manufacturing sectors other than machinery and motor vehicles. “Pre-1984” performs this
analysis in the 1948 - 1983 subsample and “post-1984” performs this analysis in the 1984 - 2018 subsample.

be more cyclical than other sectors for reasons outside our model. We present two pieces of

evidence against this concern. First, Table B.1 shows that non-hub manufacturing sectors

are less volatile than investment hubs. Although non-hub manufacturing sectors are more

volatile than non-hub non-manufacturing sectors, we show in Section 4 and Appendix F

that this result is consistent with our model because durable manufacturing sectors are key

intermediates suppliers to investment hubs. Second, Figure B.2 shows that the correlation

of non-hub manufacturing sectors with aggregate employment is close to that of the other

non-hubs and lower than the corresponding correlation of the investment hubs.

C Equilibrium Conditions

This appendix collects the equilibrium conditions of our model.

Households We simplify the household’s problem in two ways. First, the intratemporal

consumption allocation decision implies that pjtCjt = ξjP
c
t Ct, where P c

t = ΠN
j=1

(
pjt
ξj

)ξj
is

the price index of the consumption bundle. We take the price of the consumption bundle
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P c
t = 1 as our numeraire. Second, the intratemporal investment allocation decision for sector

j implies that pitIijt = λijp
I
jtIjt, where pIjt = ΠN

i=1

(
pit
λij

)λij

is the price index of the investment

bundle for sector j.

With these simplifications, the household’s problem is

max
Ct,Kjt+1,Ljt

E0

[
∞∑
t=0

βt (logCt − χLt)

]
s.t. Ct+

N∑
j=1

pIjt (Kjt+1 − (1− δj)Kjt) ≤ WtLt+
N∑
j=1

rjtKjt.

The first order conditions for this problem are

pIjt
Ct

= βEt

[
1

Ct+1

(
rjt+1 + pIjt+1(1− δj)

)]
(27)

χ =
Wt

Ct

. (28)

Firms Before solving the firm’s profit maximization problem, we note that its cost-minimization

problem with respect to intermediate input mix implies that pitMijt = γijp
M
jt Mjt, where

pMjt = ΠN
i=1

(
pit
γij

)γij
is the price index of the materials bundle for sector j. The profit maxi-

mization problem is then

max
Ljt,Kjt,Mjt

pjtQjt −WtLjt − rjtKjt − pMjt Mjt.

where Qjt = Ajt

(
K

αj

jt L
1−αj

jt

)θj
M

1−θj
jt .

The first order conditions for this problem are

Wt = θj(1− αj)
pjtQjt

Ljt

(29)

rjt = θjαj
pjtQjt

Kjt

(30)

pMjt = (1− θj)
pjtQjt

Mjt

. (31)

Note that constant returns to scale implies

WtLjt + rjtKjt + pMjt Mjt = pjtQjt. (32)
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Therefore, the accounting definition of nominal value added is simply pjtQjt − pMjt Mjt =

wtLt + rjtKjt, which is by definition pYjtYjt.

To obtain real value added, we use the Divisia index definition, which differentiates the

accounting definition of nominal value added holding prices fixed:

pYjtdYjt = pjtdQjt − pMjt dMjt

pYjtYjtd log Yjt = pjtQjtd logQjt − pMjt Mjtd logMjt

θjd log Yjt = d logQjt − (1− θj)d logMjt

d log Yjt =
1

θj
d logAjt + αjd logKjt + (1− αj)d logLjt

Market Clearing Output market clearing for sector j ensures that gross output is used

for consumption, investment, or an intermediate in production:

Qjt = Cjt +
N∑
i=1

Ijit +
N∑
i=1

Mjit. (33)

Using the firms’ first order conditions for optimal investment and intermediates purchases,

we can rewrite this condition to avoid the need to keep track of each intermediate purchase

and consumption:

Qjt =
ξjCt

pjt
+

N∑
i=1

λjip
I
itIit

pjt
+

N∑
i=1

(1− θi)γjipitQit

pjt
(34)

D Details of Model Calibration

This appendix presents additional details on our calibration of the model. As discussed in

the main text, we choose all of the parameters other than the shock process so that the

model’s steady state corresponds to the average of the postwar U.S. economy. We then feed

in the measured productivity shocks from the data.
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Figure D.1: Calibrated Value Added Shares θj
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Notes: Values for the value-added shares θj are computed as the ratio of value added to gross output in
each sector, averaged across the entire sample, 1947-2018.

D.1 Steady State Parameters

Figure D.1 plots our calibrated primary input shares θj for each sector j. Given the Cobb-

Douglas structure of our production function, the shares θj are pinned down by the ratio of

value added to gross output from the BEA input-output data. We obtain this ratio for each

year in our 1947-2018 sample and then compute their average value over time.

Figure D.2 plots the calibrated labor shares 1 − αj for each sector, averaged over 1947

- 2018.50 To correct for the fact that sector-level compensation in the BEA data does not

include self-employed income, we multiply sectoral compensation by one plus the ratio of self-

employed employment to total part-time and full-time employment in the sector.51 We then
50For years prior to 1987, we convert SIC based data to NAICS using the crosswalk in Fort and Klimek

(2018).
51This operation implicitly assumes that average compensation for self-employed workers is the same as

non-self-employed workers. The BEA data on self-employment by sector covers a coarse set of sectors, so
we apply the self-employment to employment ratio to each sector based on the finest available sector in the
self-employed data. The one exception is for the management of companies and enterprises, for which we
assume that there is no self-employment. If we allowed for self-employment in that sector, the implied labor
share often exceeds one.
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Figure D.2: Calibrated Labor Shares 1− αj
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Notes: Values for the labor share 1− αj are computed from sectoral data on compensation (adjusted for
self-employment) divided by value added (with indirect taxes and subsidies removed), averaged across all
years in the data, 1947-2018.

compute the labor share as the ratio of adjusted compensation to value added in that sector

minus indirect taxes and subsidies. Our results are also robust to making no adjustments for

self-employment.

Figure D.3 plots our calibrated depreciation rates, δj, which are equal to the average

implied depreciation rate reported in the Fixed Assets database from 1947-2018. Figure D.4

plots our calibrated Cobb-Douglas preference parameters weighting consumption in different

sectors’ output, ξj. We measure ξj as the share of total consumption expenditures purchased

from sector j.

D.2 Measured Sector-Level Productivity Series

We measure sector-level TFP using the Solow residual approach. In particular, we compute

TFP for sector j in year t as

logAjt = logQjt − θjtαjt logKjt − θjt(1− αjt) logLjt − (1− θjt) logMjt,
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Figure D.3: Calibrated Depreciation Rates δj
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Notes: Values for sector-level depreciation rates δj are taken as each sector’s average implied depreciation
rate from BEA Fixed Assets data, averaged from 1947-2018.

Figure D.4: Calibrated Consumption Shares ξj
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Notes: Values for consumption preference ξj are constructed as the fraction of total nominal consumption
expenditures on each sector’s goods or services, averaged over the entire sample 1947-2018.

72



Figure D.5: Detrending Sector-Level Data
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Notes: The figure reports log sector level TFP for the Construction and Machinery Manufacturing sectors,
normalized to zero in the year 1948. We also report a fitted polynomial trend lines for polynomials of order
1, 2, and 4, estimated via OLS.

where the factor shares vary over time in order to capture changes in the production tech-

nology that are outside our model (our results are robust to fixing the factor shares over

time). We construct the capital stock for each sector in each year via the perpetual inven-

tory method, using the nominal year-end capital stock for each sector in 1948 as our starting

point (from BEA Fixed Assets data).

We detrend our model using a log-polynomial trend because log-linear trends provide

a poor fit to sector-level TFP. Figure D.5 plots the time series of sector-level TFP for

two example sectors, construction and machinery manufacturing. Construction TFP evolves

nonlinearly over time and a fourth order polynomial trend captures these nonlinearities.52 In

contrast, machinery manufacturing evolves more linearly, but a polynomial trend continues

to fit better than a linear one. We choose a fourth order trend for the main text in order to

balance these nonlinearities against overfitting the data, but we show in Appendix G that

our main results are robust to using lower-order polynomials for detrending. Figure D.6 plots

the persistence parameters ρj, which we estimate using maximimum likelihood on detrended
52We do not present the third order trends in this figure for parsimony, but they are generally more similar

to fourth order trends than to the second order trends.
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Figure D.6: Calibrated Persistence Parameters ρj
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Notes: Persistence parameters ρj of sector-level TFP are estimated from detrended TFP using maximum
likelihood.

log-TFP.

Interpreting changes in productivity over time using principal components In

the main text, we interpreted the decline in the correlation of TFP across sectors as reflect-

ing a decline in the variance in the volatility of aggregate shocks which affect all sectors

in the economy. We now provide further support for this interpretation using a principal

components decomposition similar to Garin, Pries and Sims (2018). Performing that prin-

cipal components exercise requires us to estimate a full rank covariance matrix for TFP

pre- and post-1984, which we cannot do with 37 sectors and less than 37 years of data in

each time period. We therefore collapse our data down to 30 sectors by aggregating all non-

durable manufacturing sectors into one sector and then perform the principal components

decomposition on log TFP growth for 30 sectors pre- and post-1984.53

53We could have alternatively collapsed a different set of sectors, but we prefer this approach because:
aggregating within non-durable manufacturing does not affect the investment hubs or their key suppliers,
many non-durable manufacturing sectors are small, and the aggregated sector of non-durable manufacturing
is more intuitive than aggregates of alternative sets of service sectors.

74



Table D.1
Principal Components Analysis of Measured TFP

Sample period 1000Var(∆ logAt) Due to 1st component Residual
1949-1983 0.41 0.31 (75%) 0.10 (25%)
1984-2017 0.09 0.03 (35%) 0.06 (65%)

Notes: the aggregate shock is equal to the vector product of the loadings associated with the first principal
component with the vector of sector-level TFP. We then regress aggregate TFP on this constructed
aggregate shock and report the explained sum of squares and R2 (the variance attributable to the 1st
component) and the sum of squared errors (the variance attributable to the residual, interpreted as sectoral
shocks).

Table D.1 reports the results of this principal components exercise. The first principal

component – which can be loosely interpreted as the aggregate shock – accounts for 75%

of the variance of aggregate TFP in the pre-1984 sample, but only 35% of the variance in

the post-1984 sample. Furthermore, the variance of the residual component – which can be

loosely interpreted as the sector-specific shocks – declines by much less over time.

E Proofs

This appendix proves the three propositions in Section 4.

Proof of Proposition 1 Plug in the definition of sector-level real value added growth

d log Yjt (omitting capital, because it is fixed upon impact) to the Divisia index to get

d log Yt =
N∑
j=1

(
pYjtYjt

P Y
t Yt

)(
1

θj
d logAjt + (1− αj)d logLjt

)
. (35)

The intermediates first order condition (31) and the zero profit condition (32) imply that

θj is equal to the ratio of value added to gross output: θj =
pYjtYjt

pjtQjt
. Therefore, the weight on

TFP in the sum (35) is pYjtYjt

PY
t Yt

pjtQjt

pYjtYjt
=

pjtQjt

PY
t Yt

– the Domar weight.

The labor first order condition (29) can be rearranged to (1− αj)θjpjtQjt = WtLjt. But

again, the zero profits condition implies that θjpjtQjt = pYjtYjt, so this condition becomes

(1−αj)p
Y
jtYjt = WtLjt. Divide this expression by nominal GDP to get (1−αj)

pYjtYjt

PY
t Yt

=
WtLjt

PY
t Yt

.
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Then sum over sectors j to get 1 − αt ≡
∑N

j=1(1 − αj)
pYjtYjt

PY
t Yt

= WtLt

PY
t Yt

, the aggregate labor

share. Then multiply this expression by Ljt

Lt
and combine with the previous expression to get

(1− αt)
Ljt

Lt
=

WtLjt

PY
t Yt

= (1− αj)
pYjtYjt

PY
t Yt

Lt

Ljt
.

Plugging all this into the expression for real GDP growth (35) gives

d log Yt =
N∑
j=1

((
pjtQjt

P Y
t Yt

)
d logAjt + (1− αt)

Ljt

Lt

d logLjt

)
.

Under a first-order approximation, fluctuations in either the Domar weight
(

pjtQjt

PY
t Yt

)
or the

employment share (1− αt)
Ljt

Lt
multiply TFP growth or employment growth, which are zero

in steady state. This insight yields the result in Proposition 1.

Proof of Proposition 2 The market clearing condition for sector j in terms of over-

all expenditures is pjtQjt = pjtCjt +
∑N

i=1 pjtIjit +
∑N

i=1 pjtMjit. Due to the Cobb-Douglas

production functions, sector i’s expenditures on intermediates from sector j is simply pro-

portional to sector i’s total sales: pjtMjit = (1−θi)γjipitQit. Similarly, sector i’s expenditures

on investment goods from sector j is pjtIjit = λjip
I
itIit, where pIit = ΠN

k=1

(
pkt
λki

)λki

is the price

index for investment. Therefore, total expenditure on sector j is

pjtQjt = pjtCjt +
N∑
i=1

λjip
I
itIit +

N∑
i=1

(1− θi)γjipitQit. (36)

For notational convenience, define

Q̂t =


p1tQ1t

...

pNtQnt

 , Ĉt =


p1tC1t

...

pNtCnt

 , and Ît =


p1tI1t
...

pNtInt

 .

Then the market clearing condition (36) can be written in matrix form as Q̂t = Ĉt + Λ′Ît +

Γ′Q̂t, where Λ is the investment network matrix. Solve out this expression for Q̂t to get

Q̂t = (I − Γ′)
−1
(
Ĉt + Λ′Ît

)
.
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Writing this equation for element j, dividing by aggregate consumption Ct, and noting that

(I − Γ′)−1 gives
pjtQjt

Ct

=
N∑
k=1

ℓjk
pktCkt

Ct

+
N∑
k=1

ℓjk

N∑
m=1

λkm
pImtImt

Ct

.

Now plug this expression into the equilibrium labor supply relationship from equation

(10), Ljt = (1− αj)θj
pjtQjt

Ct
, to get

Ljt = (1− αj)θj

[
N∑
k=1

ℓjk
pktCkt

Ct

+
N∑
k=1

ℓjk

N∑
m=1

λkm
pImtImt

Ct

]
, (37)

which is proportional to equation (11) in the main text. To arrive at equation (12), simply

take log-deviations from steady state and note that pktCkt

Ct
= ξk is constant over time.

Proof of Proposition 3 Using the first order conditions for the profit maximization

problem, equations (29)-(31)), we can write the price of each sector j’s final good as:

pjt =
1

Ajt

(
rjt
αjθj

)αjθj ( Wt

(1− αj)θj

)(1−αj)θj
(

pMjt
1− θj

)1−θj

=
1

Ajt

(
rjt
αjθj

)αjθj ( Wt

(1− αj)θj

)(1−αj)θj

∏N
i=1

(
pit
γij

)γij
1− θj

1−θj

using the fact that pMjt =
∏N

i=1

(
pit
γij

)γij
.

Taking the log of both sides gives us:

log pjt = − logAjt + αjθj log rjt + (1− αj)θj logWt +
N∑
i=1

(1− θj)γij log pit + Φj

where Φj = log

( 1
αjθj

)αjθj (
1

(1−αj)θj

)(1−αj)θj

∏N
i=1

(
1

γij

)γij

1−θj

1−θj
.

To assess the direct effect of a TFP shock on output prices, we totally differentiate the
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above expression, holding fixed any response of the rental rates or wages, obtaining:

d log pjt = −d logAjt +
N∑
i=1

(1− θj)γijd log pit

Or in matrix notation,

d log pt = −d logAt + Γ′d log pt

d log pt = −L′d logAt

where d log pt is an N×1 vector of sector-level prices and d logAt is the vector of sector-level

productivity.

To relate this to the investment price index, we use the fact that pIjt =
∏N

i=1

(
pit
λij

)λij

and

thus:

d log pIt = Λ′d log pt

= −(LΛ)′d logAt

In non-matrix notation, this implies the result that d log pImt = −
∑N

i=1 ωimd logAit, yielding

the proposition in the text.

F Additional Results For Section 4

This appendix describes additional results mentioned in Section 4 of the main text.

F.1 Relationship to Investment-Specific Shock Literature

The role of investment hub shocks in driving fluctuations in our model is reminiscent of

the large literature on investment-specific technology shocks (see, for example, Greenwood,

Hercowitz and Krusell (2000) or Justiniano, Primiceri and Tambalotti (2010)). This litera-

ture typically works with two-sector models in which one sector produces only consumption

goods and the other only produces investment goods with no intermediate goods connections
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between them.

Our model provides a richer sectoral disaggregation to bring the model to the data

because the correct notion of the “investment producers” includes the key suppliers of in-

vestment hubs in the Leontief-adjusted investment network. As we show in the main text,

productivity shocks in these sectors generate substantial aggregate fluctuations. In contrast,

a common approach to measuring shocks in the investment-specific shock literature is to use

the aggregate price index of investment relative to consumption. It is difficult to generate

large business cycle fluctuations with this price series because it is only weakly correlated

with the aggregate cycle.

An equally important but more subtle issue is that the investment-specific shock litera-

ture struggles to generate positive comovement between the consumption- and investment-

producing sectors. To help understand this issue, rewrite equation (12) without the interme-

diates network:

d logLjt =
N∑

m=1

λjm

(
pI∗mI∗m
p∗jQ

∗
j

)(
d log pImtImt − d logCt

)
,

which is the same as (12) in the main text except that the Leontief-adjusted investment

network is equal to the raw network: Ω = Λ. Following the same logic in the main text, only

employment in the investment hubs will meaningfully fluctuate over time because the other

sectors have a small role in producing investment goods (i.e. λjm is small for non-hub sectors

j).

Table F.1 illustrates the comovement problem in the version of our model without the

intermediates network (i.e. setting the input-output network Γ = I). The table computes

the correlation between employment fluctuations at our four investment hub sectors and a

set of sectors we define as “consumption hubs:” food manufacturing, finance & insurance,

real estate, retail trade, health services, food services, and other services (these seven sectors

comprise roughly 60% of consumption expenditures in our model calibration). Without the

intermediates network, the correlation between employment in these two sets of sectors is

counterfactually low.54 The intermediates network Γ in our full model solves this comovement
54With an an infinite Frisch elasticity (η → ∞), the correlation would be exactly zero if none of the
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Table F.1
Comovement of Investment and Consumption Sectors, Data and Model

Data Model Model, w/o Intermediates
Pre-1984 Post-1984 Pre-1984 Post-1984 Pre-1984 Post-1984

ρ(∆lct,∆lit) 0.51 0.50 0.76 0.81 0.18 0.22

Notes: business cycle statistics in the pre-1984 sample (1948 - 1983) and post-1984 sample (1984-2018). lct
is log employment in consumption hub sectors, defined as: food manufacturing, finance & insurance, real
estate, retail trade, health services, food services, and other services. lit is log employment in investment
hub sectors. ρ(∆lct,∆lit) denotes the average correlation between the employment fluctuations for
consumption and investment hub sector. “Model” corresponds to simulations in our model where shocks
are measured from the data and then fed into model described in the main text, albeit without the
investment production frictions described in Section 5. “Model, w/o Intermediates” corresponds to
simulations from the same exercise, except where there are no intermediate inputs in production (i.e.
setting the share of value added in gross output equal to 1, θj = 1.)

problem because it implies consumption-producing sectors also supply intermediate goods

to investment-producing sectors. In contrast, the investment-specific shocks literature uses

other nominal or real rigidities to overcome the negative comovement problem.55

The fact that the model without intermediates generates too little comovement implies

that aggregate employment will be less volatile as well. Figure F.1 illustrates this issue

by computing the elasticity of aggregate employment with respect to a each sector-specific

shock Ait in the version of our model without intermediates (Γ = I). Only the shocks to the

investment hubs, highlighted in red, have a meaningful impact on aggregate employment.

Furthermore, their effect on aggregate employment is primarily limited to employment in

the hubs themselves.
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Figure F.1: Elasticity of Aggregate Employment to Sectoral Shocks Without Intermediates
Network
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Notes: reduced-form elasticities of aggregate employment Nt to sector-specific shocks Ait in a version of the
model without intermediate goods (i.e. θj = 0 for all j). For each sector, we simulate the model with
σ(logAit) = 1% shocks to that sector only. The bars plot the volatility of aggregate employment σ(logNt).
Investment hubs are highlighted in red.

Table F.2
Volatility of Activity, Hubs vs. Intermediate Suppliers

Investment Hubs Suppliers Others
Data Pre-84 Post-84 Pre-84 Post-84 Pre-84 Post-84
σ(∆yst) 9.13% 9.18% 8.03% 6.72% 5.94% 4.90%
σ(∆lst) 6.14% 4.83% 6.04% 4.04% 2.70% 2.69%

Model Pre-84 Post-84 Pre-84 Post-84 Pre-84 Post-84
σ(∆yst) 12.92% 9.63% 9.02% 7.03% 5.57% 4.93%
σ(∆lst) 9.37% 6.65% 5.93% 4.28% 1.68% 1.18%

Notes: standard deviation of business cycle component of sector-level value added or employment. yst is
logged real value added in sector s, lst is logged employment in sector s, and ∆ denotes the first difference
operator. “Investment hubs” compute the unweighted average the value of these statistics over s =
construction, machinery manufacturing, motor vehicles manufacturing, and professional/technical services.
“Suppliers” computes the weighted average over the non-hub sectors of durable manufacturing, wholsesale
trade, and transportation & warehousing. “Others” computes the unweighted average over the sectors not
classified as investment hubs or suppliers. “Pre-1984” performs this analysis in the 1948 - 1983 subsample
and “post-1984” performs this analysis in the 1984 - 2018 subsample.
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F.2 Supporting Evidence for Mechanism in the Data

We present supporting evidence for the role of the key suppliers to investment hubs discussed

in 4. Table F.2 shows that the key suppliers to investment hubs are more volatile over the

business cycle than other non-hub sectors, consistent with the role of the Leontief-adjusted

investment network in propagating shocks. The model provides a good fit for the behavior

of these sectors, especially for employment. The table also shows that the suppliers are less

volatile than the hubs themselves, again consistent with the model. Figure F.2 shows that

the key suppliers to investment hubs are more correlated with the aggregate business cycle

than other non-hub sectors, consistent with their role in propagating sector-specific shocks

to aggregates.

F.3 Cobb-Douglas Capital Accumulation

We now show that employment is constant in the version of the model in which we replace

the standard linear capital accumulation rule, Kjt+1 = (1−δj)Kjt+Ijt, with a Cobb-Douglas

one:

Kjt+1 = K
1−δj
jt I

δj
jt . (38)

While this alternative rule (38) is inconsistent with national accounting practice, and thus

not suitable for a quantitative model, it is nonetheless useful in explaining how investment

drives our results. In particular, we will show that the Cobb-Douglas form (38) implies

that investment expenditure is proportional to total income, which in turn implies that

sector-specific shocks generate exactly offsetting income and substitution effects which leave

employment unchanged.56

consumption hub sectors produced investment because their employment would be constant (see Proposition
2). However, retail trade, finance & insurance and real estate produce small amounts of investment, so
employment in those sectors does fluctuate over time. With a finite Frisch elasticity, an increase in an
investment hub sector also increases the marginal disutility of supplying labor to non-hub sectors, which
would decrease employment in those sectors and generate negative comovement. See Kim and Kim (2006)
for further discussion of the role of the Frisch elasticity in determining sectoral comovement.

55See Hornstein and Praschnik (1997) and Ascari, Phaneuf and Sims (2019) for related models which solve
the “Barro and King (1984) curse” using roundabout production.

56We thank Ernest Liu and Matt Rognlie for pointing this property out to us.
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Figure F.2: Correlogram of Sector-level Value Added with Aggregate Employment, Hubs
vs. Intermediate Suppliers
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Notes: correlation of log real value added in sector s in year t− h, yst+h, with log aggregate employment in
year t, lt. ∆ denotes the first difference operator. The x-axis varies the lead/lag h ∈ {−2,−1, 0, 1, 2}.
“Investment hubs” compute the unweighted average the value of these statistics over s = construction,
machinery manufacturing, motor vehicles manufacturing, and professional/technical services. ”Intermediate
Suppliers” computes these statistics for the remaining durable manufacturing sectors, wholesale trade, and
transportation & warehousing. “Non-hubs” computes the unweighted average over the remaining sectors.
“Pre-1984” performs this analysis in the 1948 - 1983 subsample and “post-1984” performs this analysis in
the 1984 - 2018 subsample.

The alternative capital accumulation rule changes the Euler equation for capital (27) into

pIjtIjt

Ct

1

δjKjt+1

= βEt

[
1

Ct+1

(
αjθj

pjt+1Qjt+1

Kjt+1

+
(1− δj)

δj

pIjt+1Ijt+1

Kjt+1

)]
.

which can be rearranged into

pIjtIjt

Ct

= βEt

[
δjαjθj

pjt+1Qjt+1

Ct+1

+ (1− δj)
pIjt+1Ijt+1

Ct+1

]
. (39)

We now guess and verify that the household’s valuation of output and investment are

constant over time. Denote those constants as I∗j =
pIjtIjt

Ct
and Q∗

j =
pjtQjt

Ct
. The Euler equation

(39) relates these two objects through

I∗j =
βδjαjθj

1− β(1− δj)
Q∗

j , (40)

Now define Bj =
βδjαjθj

1−β(1−δj)
and B to be the matrix with Bj on the diagonals and zero
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off-diagonal.

We plug (40) into the expression for the household’s value of output (11) in order to solve

for Q∗
j and I∗j . We write the market clearing condition in matrix form using the notation

Q∗ =


Q∗

1

...

Q∗
N

 and ξ̂ =


ξ1
...

ξN

 .

Using this notation, and plugging in our guesses, the household’s value of output from (11)

becomes

Q̂∗ = Lξ + βLΛ′BQ̂∗,

where the second term on the right-hand side uses the fact that I∗j = BjQ
∗
j from (40). Solving

this equation for Q∗ yields

Q∗ = (I − βLΛ′B)−1Lξ

=
∞∑
s=0

(βLΛ′B)
s Lξ (41)

Equation (41) shows that the household’s valuation of output equals the discounted sum

of its value of consumption, taking into account the ability to transfer resources over time

using investment. The only condition we need to verify is that our guessed equilibrium is

consistent with constant labor supply. Given our growth-consistent preferences, we indeed

have that L∗
j =

θj(1−αj)

χ
Q∗

j is constant over time.

Hence, the Cobb-Douglas capital accumulation equation (38) implies that investment —

and the investment network — are irrelevant for aggregate dynamics beyond their impact on

the steady state Domar weights. Intuitively, the Cobb-Douglas capital accumulation equation

implies that investment expenditures are proportional to total income, which in turn is

proportional to gross output. Therefore, sector-specific shocks generate equal-sized income

and substitution effects, just as in the model without investment. Our full model with the

linear capital accumulation rule breaks this irrelevance result by increasing the elasticity
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of the capital stock with respect to current investment.57 In this case, changes in current

investment have a larger effect on the capital stock, breaking the result that investment

expenditures are proportional to output. This property allows the household’s valuation of

output, and therefore employment, to fluctuate over time.

Relationship to Full Depreciation It is well-known that the one-sector RBC model,

with the standard linear capital accumulation rule, admits a closed-form solution with con-

stant employment in the case of full depreciation. The discussion above makes clear that

full depreciation is just a special case of the Cobb-Douglas capital accumulation rule (38)

with δj = 1; indeed, it is the only value of δj for which the linear and Cobb-Douglas capital

accumulation rules are the same.

F.4 Other Analysis Mentioned in Main Text

This subsection collects a number of miscellaneous results referenced in Section 4.

Distribution of Domar weights Figure F.3 shows that the model fits the stationary

distribution of Domar weights fairly well. In the model, a sector’s Domar weight is related to

its role in supplying consumption and investment goods. The Domar weights at investment

hubs are not abnormally large because investment is a smaller fraction of overall spending

than consumption.

Cyclicality of Labor Productivity Due to Sectoral Shocks Subtracting aggregate

employment from our expression for real GDP in Proposition 1, the impact effect of a sector-

specific shock Ait on aggregate labor productivity LPt is

d logLPt =
N∑
j=1

(
pjQj

P Y Y

)∗

d logAjt − α∗
N∑
j=1

(
Lj

L

)∗

d logLjt

All else equal, higher aggregate TFP increases labor productivity because it increases the

productivity of all factors; on the other hand, higher aggregate employment decreases labor
57Of course, with the linear accumulation rule, that elasticity becomes infinite; more generally, we conjec-

ture that increasing the elasticity beyond the Cobb-Douglas case will generate fluctuations in employment.
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Figure F.3: Stationary Distribution of Domar Weights

Notes: average values of the Domar weights E[pjtQjt

PY
t Yt

] in the model (the steady state) and the data
(averaged over the entire sample 1948-2018).

productivity because of decreasing returns to scale in labor (which implies that the aggregate

capital share α∗ > 0). Hence, shocks which increase weighted employment α∗d logLt by more

than the sector’s steady state Domar weight, which determines the response of aggregate

TFP, will decrease labor productivity.

Figure F.4 shows that shocks to nearly all of the investment hubs and their intermediate

suppliers decrease labor productivity. The figure plots the cyclicality of aggregate labor

productivity in response to 1% sector-specific shocks to each sector in isolation. Shocks to

investment hubs and their suppliers generally increase aggregate employment substantially

more than their sectors’ Domar weights to decrease labor productivity. The exceptions are

professional/technical services, wholesale trade, and transportation & warehousing in the

right of the figure. While these sectors have sizeable effects on employment, they are also

well-connected in the intermediates network and therefore also have large Domar weights.
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Figure F.4: Cyclicality of Labor Productivity Due to Sectoral Shocks
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Notes: cyclicality of labor productivity, Corr(log Yt − logLt, log Yt) in response to sector-specific shocks
Ait). For each sector, we simulate the model with σ(logAit) = 1% shocks to that sector only. Investment
hubs are highlighted in red.

Numerical Exploration of Sectoral Investment Response to Shocks We now pro-

vide numerical comparative statics to understand the mapping from sectoral shocks to the

household’s valuation of aggregate investment, pIt It
Ct

=
∑

j p
I
jtIjt

Ct
(Proposition 2 shows how em-

ployment responds to changes in the household’s valuation of investment). Figure F.5 plots

the elasticity of the household’s valuation of aggregate investment in response to sector-

specific shocks to each sector. The blue bars show that this elasticity is very similar to the

elasticity of aggregate employment in response to the shocks plotted in Figure 5 in the main

text, consistent with Proposition 2.58

Figure F.5 also shows that the distribution of these elasticities across sectors is primarily

determined by the Leontief-adjusted investment network. In particular, the grey bars in
58Given the result of Proposition 2, we can write changes in aggregate employment as dLt =

∑
j dLjt =∑

j

∑
m ωjmd

(
pI
mtImt

Ct

)
=
∑

m d
(

pI
mtImt

Ct

)∑
j ωjm. The result that the numerical response of aggregate em-

ployment is proportional to the numerical response of the aggregate household’s valuation of investment,
dLt = ϕd

pI
t It
Ct

will obtain if the sum over the rows of each column of ωjm is the same across sectors. This
is exactly true in the case where there are no intermediate goods, since in that case, the Leontief-adjusted
network is equal to the investment network (whose rows sum to 1 by construction).
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Figure F.5: Elasticity of Household’s Valuation of Aggregate Investment to Sectoral Shocks
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Notes: reduced-form elasticities of the household’s valuation of aggregate investment, pI
t It
Ct

to sector-specific
shocks Ait. For each sector, we simulate the model with σ(ϵit) = 1% shocks to that sector only. The bars
plot the volatility of household’s valuation of aggregate investment σ(log

pI
t It
Ct

) divided by the volatility of
sector-specific TFP σ(logAit). The grey bars show this elasticity where all non-network parameters are set
to the mean across sectors.

Figure F.5 plot the elasticities in which all these other parameters are set equal to the

average value across sectors.59 In this case, variation in the elasticities is solely determined

by heterogeneity in the Leontief-adjusted investment network. The blue and grey bars are

fairly similar, consistent with the idea that heterogeneity in the Leontief-adjusted investment

network is the primary source of differences across sectors in our full model. The main

exception is the effect of a shock to construction, which is also shaped by the low depreciation

rate of residential structures and the abnormally high capital share in real estate (detailed

results available upon request).

While that exercise shows that the Leontief-adjusted investment network is a key de-

terminant of these elasticities starting from our calibrated parameters, we now show that

it is also the key determinant for a large region of the parameter space. We explore the

parameter space by sampling 10,000 alternative parameterizations of the model in which we
59The parameters are depreciation rates (δj), capital shares (αj), value added shares of gross output (θj),

the persistence of TFP shocks (ρj), and consumption shares (ξj).
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hold the Leontief-adjusted investment network fixed but draw the other parameters from

the following distributions (all independent of each other):60

• Capital shares αj ∼ uniform[0.08, 0.93]

• Consumption shares ξj ∼ uniform[0, 1], rescaled to ensure
∑N

j=1 ξj = 1

• Depreciation rates δj ∼ uniform[0.03, 0.15]

• Persistence parameters ρj ∼ uniform[0.30, 0.91].

The support of these uniform distributions are determined by the lowest and highest values

of each parameter in our baseline calibration of the model. Hence, these 10,000 draws rep-

resent an exhaustive exploration of the parameter space (although that almost all of these

parameterizations are not representative of the data).

For each of these 10,000 parameterizations, we compute the following two statistics which

summarize the role of the Leontief-adjusted investment network in determining the elasticity

of the investment to consumption ratio to sector-specific shocks:

• Corr(d logP
I
t It/Ct

d logAit
,
∑N

j=1 ωij): the correlation of the elasticity of the aggregate investment-

to-consumption ratio with respect to a given sector’s shock and that sector’s weighted

outdegree in the Leontief-adjusted investment network (which captures its importance

in supplying investment goods). If the Leontief-adjusted investment network is the

only factor determining the elasticities, then this correlation would be close to 1.61

• Corr( d log p
I
jt

d logAit
, ωij): the correlation of the passthrough of one sector’s shock to another

sector’s price index of investment with the pair’s entry in the Leontief-adjusted invest-

ment network. Proposition 3 shows this correlation should be 1 if primary input prices

are held fixed, but those prices may fluctuate over time in general equilibrium, driving

the correlation below 1.

60We do not re-sample the parameters of the intermediates network because those parameters also de-
termine the Leontief-adjusted investment network. We also do not need to sample the covariance matrix
of shocks because, at first order, the covariance matrix is irrelevant for the elasticity of the investment to
consumption ratio with respect to sectoral TFPs due to certainty equivalence.

61In particular, the correlation is 0.99 in the version of the model in which all parameters are homogeneous
across sectors except for the Leontief-adjusted investment network.
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Figure F.6: Role of Investment Network in Driving Numerical Results
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Notes: kernel density estimates from computing correlation statistics from 10,000 calibrations of our model
where in each calibration, αj , ξj , δj , and ρj are drawn from uniform distributions as described in the text
above. The red solid line represents the kernel density of the correlation between each sector’s weighted
outdegree in the Leontief-adjusted Investment Network and the numerical elasticity of the aggregate
investment to consumption ratio in response to a shock to that sector, Corr(d logP I

t It/Ct

d logAit
,
∑N

j=1 ωij). The
blue dashed line presents the kernel density estimate of the correlation between each the elasticity of each
sector’s investment price with respect to each sector’s shock and that pair’s entry in the Leontief-adjusted
investment network. Corr( d log pI

jt

d logAit
, ωij). The purple dotted line represents the kernel density of

Corr(d logP I
t It/Ct

d logAit
,
∑N

j=1 ωij) using tighter bounds on the support of possible values of αj to eliminate
wildly counterfactual outliers. Kernel density estimates are constructed using 100 equally spaced points
and normal kernel.

Figure F.6 plots the kernel density of these statistics across the 10,000 draws of parameter

values. The dashed blue line shows that the price pass-through correlation Corr( d log p
I
jt

d logAit
, ωij)

is above 0.8 in 99.97% of the parameterizations and above 0.9 in 87.7% of the parameteriza-

tions. This result indicates that the general equilibrium effects which may break Proposition

3 are relatively unimportant, validating our interpretation of shocks to the investment hubs

and their key suppliers as aggregate investment supply shocks is valid.

The solid red line in Figure F.6 shows that Corr(d logP
I
t It/Ct

d logAit
,
∑N

j=1 ωij) is also high across

the majority of simulations, indicating that the Leontief-adjusted investment network is the

primary determinant of the elasticity of the aggregate investment-to-consumption ratio in

response to shocks. However, the relationship is less tight than for investment prices; 78.6%
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of parameterizations have a correlation above 0.8 and 57.6% have a correlation above 0.9.

The dashed purple line shows that those lower correlations are primarily determined by

extreme and unrealistic values of the consumption shares αj; if we constrained those draws

to be within the more reasonable range of αj ∼ uniform[0.10, 0.67], then the distribution of

correlation statistics become more tightly bunched around 0.9: 92.3% of parameterization

have a correlation greater than 0.8 and 77.6% of parameterizations have a correlation greater

than 0.9.

G Additional Results on Changing Business Cycles

We now provide several additional results referenced in Section 5 of the main text.

G.1 Investment Production Frictions

In this subsection, we provide details about the investment production frictions from Section

5 impact the equilibrium conditions of our model and then show that our results are robust

to varying the strength of these frictions.

Equilibrium conditions The investment production frictions change the output market

clearing condition to be:

Qjt = Cjt +
N∑
i=1

Mijt +

(
N∑
i=1

I−ρ
ijt

)− 1
ρ

(42)

Define the total production of investment goods by sector j as Zjt =
(∑N

i=1 I
−ρ
jit

)− 1
ρ . Then

the intratemporal investment allocation decision becomes:

pit

(
Zjt

Iijt

)1+ρ

= λijp
I
jtIjt (43)
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The corresponding cost-minimization problem implies that the price index of a new unit of

investment for sector j is now:

pIjt =
N∏
i=1

(
pit
λij

)λij N∏
i=1

(
Zit

Ijt

)(1+ρ)λij

(44)

Therefore, the price of purchasing an investment good is now specific to the producer-

purchaser pair; an increase in investment demand from a given sector will put upward

pressure on its price index for investment goods, dampening fluctuations in investment.

Importantly, this extension of the model does not change the results in any of the propo-

sitions presented in Section 4. Proposition 1 only relies on the definition of value added,

which is unaffected by this friction. Proposition 2 does rely on the resource constraint, which

has now been modified, but that modification does not change those results; to see this fact,

note that we can solve for Zjt using equation (44) above:

Zjt =

(
N∑
i=1

I−ρ
jit

)− 1
ρ

=

(
N∑
i=1

λjip
I
itIit

pjtZ
1+ρ
jt

)− 1
ρ

=
N∑
i=1

λjip
I
itIit

pjt

This result, together with equation (17), implies that we can still write the resource con-

straint as in equation (36) in the proof for Proposition 2. Essentially, because investment

expenditures by each sector remain Cobb-Douglas over each intermediate investment good

and markets are competitive, the expenditures on each intermediate investment good remain

proportional to total expenditure.

Finally, the result in Proposition 3 is also unchanged as long as the conditions for isolating

the direct effect of TFP shocks on investment prices are extended to include holding fixed

investment production and expenditures.
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Table G.1
Robustness with Respect to Investment Production Frictions

Baseline No Frictions Large Frictions
Pre-1984 Post-1984 Pre-1984 Post-1984 Pre-1984 Post-1984

σ(∆yt) 3.95% 2.42% 3.97% 2.64% 3.86% 2.38%
ρ(∆yt −∆lt,∆yt) 0.52 -0.01 0.38 -0.31 0.57 0.10
σ(∆lt)/σ(∆yt) 0.90 1.03 0.93 1.12 0.88 1.00
σ(∆it)/σ(∆yt) 3.78 4.11 5.63 9.22 3.74 4.16

Notes: business cycle statistics in the pre-1984 sample (1948 - 1983) and post-1984 sample (1984-2018). yt
is log real GDP, lt is log aggregate employment, it is log real aggregate investment, and ∆ denotes the first
difference operator. “Baseline” refers to the baseline model described in the main text, which uses
ρ = −1.04. “No Frictions” refers to the model without reallocation frictions, i.e. ρ = −1. “Large Frictions”
refers to the model with ρ = −1.5.

Robustness to varying ρ In our baseline results, we set the parameter ρ = −1.04 to

match movements in the distribution of investment expenditures across sectors. Table G.1

that without these frictions (setting ρ = −1), investment is more volatile than in the base-

line model, especially in the post-1984 sample. This excess volatility in turn implies higher

volatility of employment by (12), so the cyclicality of labor productivity falls by nearly 0.7

and becomes countercyclical in the post-1984 sample. On the other hand, Table G.1 shows

that increasing ρ to −1.5 does not materially impact our primary findings. These results

indicate that while breaking the perfect substitutability matters for our results, the precise

degree of imperfect substitutability does not.

G.2 Time Series Fit of the Model

We now compare the model’s implied time series of real GDP, aggregate employment, ag-

gregate investment, and aggregate consumption to the data. Recall that no features of these

series were targeted in our calibration; instead, we simply feed in the realized series of sector-

level TFP shocks and let the model endogenously produce these macroeconomic outcomes.

Figure G.1 plots the first-differenced series and Figure G.2 plots the HP-filtered ones. In

both cases, the average correlation between the model’s and data’s time series is approxi-

mately 0.5.62 Importantly, aggregate consumption comoves with the business cycle, which
62The weakest correlation between model and data is in employment, although this largely seems to be due
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Figure G.1: Aggregate Time Series in Model and Data: First Differences

Notes: time series of aggregate GDP, employment, investment, and consumption in the model and the
data. Each series has been logged and first-differenced.
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Figure G.2: Aggregate Time Series in Model and Data: HP Filter

Notes: time series of aggregate GDP, employment, investment, and consumption in the model and the
data. Each series has been logged and HP filtered with smoothing parameter λ = 6.25. To avoid endpoint
bias from the HP filter, we omit the first and last three years of data of the entire sample.
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is a challenge in models driven by shocks to investment supply; as we discuss in Appendix

F, our model generates comovement through the intermediates network. The model also

matches the severity of the 1982 and 2008 recessions, which are typically challenging to

explain with supply shocks.

All that said, there are important differences between the model and data, indicating

scope for additional shocks, nominal rigidities, or nominal rigidities to improve model fit.

First, given the complete markets structure, consumption is much smoother than in the data

(as in the one-sector RBC model – see King and Rebelo (1999)). Second, investment is more

volatile in our model than in the data, again as in the one-sector RBC model. Third, the

first-differenced model series predict robust recoveries following the post-1980s recessions

which manifest as higher-than-average growth rates following these recessions. These high

growth rates did not materialize in the data partly because the average growth rate fell over

this period, which is outside our model. The HP filter eliminates these trend changes in the

growth rate, bringing the model closer to the data.

G.3 Structural Change

Our baseline analysis focuses on changes in the sectoral shock process by holding the param-

eters of the economy fixed over time. However, there have been substantial trend changes

in many of these parameters over time, such as structural transformation from manufac-

turing to services (impacting the distribution of consumption expenditures and production

networks), the rise of intellectual property products (generating a higher depreciation rate),

and the decline in labor share. While a full analysis of the impact of these structural changes

on business cycle fluctuations is beyond the scope of this paper, we present two comple-

mentary exercises to show that the main outcomes of interest in our analysis are robust to

accounting for structural change in the parameters of our model.

Transition Path Our first exercise allows for the structural parameters to change smoothly

over time along a perfect foresight transition path. In particular, we assume that, starting

to a timing difference in the model and the data; if the model time series is shifted one time period forward,
the correlation between model and data is much higher. This timing reflects the fact that employment slightly
lags GDP in the data (this lag is smaller in quarterly data but magnified in annual data).
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in 1948, agents become aware of the trend path of all structural parameters of the economy

over the 1948-2018 period.63 We further assume that these trends continue through 2043 and

then gradually converge to their new steady state by 2068.64

We solve for the equilibrium over this path using a variant of the solution algorithm

developed in Maliar et al. (2020). This algorithm assumes that, while agents have perfect

foresight over the changes in the parameters of the economy, there is still uncertainty over

the realization of TFP shocks each period. We first solve for policy functions for log capital

at T , when parameter changes have ceased and the economy is stationary. We then iterate

backward, solving for the policy functions in T − 1 taking the policy function in period T

as given. We iterate over this procedure until we have policy functions for the entire sample

(vom Lehn (2020) implements this algorithm in a similar way). We assume that the initial

condition of the economy is the steady state corresponding to the parameter values observed

in the year 1948.

We use a Smolyak grid of points to solve for the decision rules. We limit ourselves to a

first-order Smolyak grid and approximate the policy function for the log of capital as linear

in the state variables. For tractability, and given that our policy functions for capital are

log-linear, we assume that certainty equivalence holds and evaluate expectations with a first-

order quadrature. We solve for the capital accumulation policy functions in each period and

then feed in the time series of measured TFP shocks used in our baseline analysis.65

Table G.2 shows that our main results continue to hold along this transition path: the
63Specifically, the set of parameters which we allow to change over time are: the investment network (λij),

the intermediates network (γij), depreciation rates (δj), capital shares (αj), the share of primary inputs in
production (θj), and the consumption shares (ξj). We identify the trends in parameter values using a fourth-
order polynomial, consistent with our approach to detrending TFP in Section 5. Since the consumption
share, investment network, and intermediate network parameters must sum to 1, we do not compute trends
for those parameters directly. Instead, we first compute trends in the levels of consumption expenditures,
intermediates expenditures, and investment expenditures, and then compute expenditure shares based on
those trends.

64We project forward these trends conservatively, on the basis of linear trends for the moving averages of
parameters for the last 5, 10, 15, or 20 years of data, selecting which yields the smallest trend growth in
absolute value. We do this to minimize the likelihood of extreme trends following the last year of observed
data.

65We set the parameter governing the investment production frictions to ρ = −1.3 because the changes
in parameter values increase the volatility of investment. Our approximated decision rules imply negative
investment in 1% of observations, which is inconsistent with our investment production frictions. In these
cases, we set investment to 10% of the depreciated capital stock in that period; our results are robust to
varying this boundary value.

97



Table G.2
Allowing for Structural Change via Transition Path

Baseline Model Structural Change
Pre-1984 Post-1984 Pre-1984 Post-1984

σ(∆yt) 3.95% 2.42% 4.57% 2.10%
ρ(∆yt −∆lt,∆yt) 0.52 -0.01 0.50 0.05
σ(∆lt)/σ(∆yt) 0.90 1.03 0.89 1.02
σ(∆it)/σ(∆yt) 3.78 4.11 5.43 4.66

Notes: business cycle statistics in the pre-1984 sample (1948 - 1983) and post-1984 sample (1984-2018). yt
is log real GDP, lt is log aggregate employment, it is log real aggregate investment, and ∆ denotes the first
difference operator. “Baseline” corresponds to the model described in the main text. “Structural change”
corresponds to the results from the transition path exercise.

cyclicality of labor productivity falls by 0.45 (compared to 0.53 in the baseline) and the rela-

tive volatility of employment rises by 0.13 (the same as in the baseline). The main difference

from our baseline result is that the relative volatility of investment is now higher, reflecting

the fact that our forward-looking agents change their investment decisions in response to

changes in the path of structural parameters (as well as the simple fact that nonlinearities

in the solution method also increase volatility).

Simulation Exercises While the previous exercise allowed for smooth changes in struc-

tural parameters over time, it relied on strong assumptions regarding how firms adjust to

these parameter changes, including an unrealistic degree of foresight on the part of agents.

Our second exercise sidesteps these issues by simply simulating the model separately for

parameterizations corresponding to the pre- and post-1984 period. In particular, instead of

feeding in the realized time series of sectoral TFP shocks as in the main text, we estimate

the covariance matrix of these shocks separately for the pre vs. post 1984 subsamples and

compute population moments from those two estimates. The advantage of this approach is

that it avoids assumptions on the particular path of parameters over time. However, the dis-

advantages are that it instead assumes that parameters change once and for all, that agents

understand that abrupt change, and that there are no meaningful transitional dynamics

between the two sets of parameters.

An additional disadvantage of this exercise is that we cannot estimate a full-rank co-
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Table G.3
Allowing for Structural Change via Simulation

Baseline (30 Sectors) Simulation Structural Change
Pre-1984 Post-1984 Pre-1984 Post-1984 Pre-1984 Post-1984

σ(∆yt) 3.21% 1.94% 3.63% 2.13% 4.07% 2.04%
ρ(∆yt −∆lt,∆yt) 0.75 0.32 0.76 0.42 0.80 0.43
σ(∆lt)/σ(∆yt) 0.79 0.95 0.83 0.92 0.83 0.92
σ(∆it)/σ(∆yt) 3.32 3.70 3.54 3.79 3.76 3.71

Notes: business cycle statistics in the pre-1984 sample (1948 - 1983) and post-1984 sample (1984-2018). yt
is log real GDP, lt is log aggregate employment, it is log real aggregate investment, and ∆ denotes the first
difference operator. “Baseline (30 Sectors)” corresponds to the exercise where shocks are measured from
the data and then fed into model described in the main text, albeit with 30 sectors (non-durable
manufacturing is collapsed into a single sector). “Simulation” corresponds to the simulation exercises based
on estimated covariance matrices for 30 sectors. “Structural change” corresponds to the simulation
exercises, where model parameters are estimated separately for the pre-1984 and post-1984 period.

variance matrix with 37 sectors and less than 37 years of data both pre- and post-1984

subsamples. Therefore, following the same procedure described for the principal components

analysis in Appendix D, we collapse our data to 30 sectors by aggregating all non-durable

manufacturing sectors into a single sector. We show in the left panel of Table G.3 that the

changes in business cycles observed in the model with 37 sectors are still observed with this

coarser disaggregation of the economy.66

We estimate the covariance matrix of innovations to TFP separately for each subsample

using the sample covariance matrix and then separately simulate the model for 10,000 periods

under each of the estimated covariance matrices, discarding the first 100 periods in each case.

The middle panel of Table G.3 shows that, if we hold all the structural parameters fixed over

time, this simulation approach generates similar changes in aggregate business cycle patterns

to feeding in the realized series. The right panel of Table G.3 shows that our key outcomes

of interest do not change very much relative to the simulation benchmark when we allow
66The relative volatility of employment is lower than in the baseline model because we aggregate some rel-

atively important suppliers of investment hubs (e.g. petroleum manufacturing and chemicals manufacturing)
with other sectors that produce primarily consumption goods (e.g. food/beverage manufacturing, apparel
manufacturing); in this case, a shock to one of the relatively important suppliers also increases consumption
and therefore generates an income effect on labor supply which is absent in the baseline model. The fact that
employment is less volatile implies that labor productivity is more procyclical than in the baseline model
as well (see Footnote 31 for the precise relationship between the relative volatility of employment and the
cyclicality of labor productivity).

99



for structural change.67 The main exceptions are that the model no longer generates an

increase in the volatility of investment over time and implies a somewhat larger decline in

the volatility of GDP.

G.4 Non-Cobb Douglas Production and Preferences

While our baseline analysis imposed Cobb-Douglas production and utility functions for an-

alytical tractability, we now show numerically that our results are robust to allowing for

constant elasticity of substitution (CES) functional forms. Specifically, we generalize the

production function to become

Qjt =

[
θ

1
σy

j Y
σy−1

σy

jt + (1− θj)
1
σy M

σy−1

σy

jt

] σy
σy−1

(45)

where

Yjt = Ajt

[
α

1
σk
j K

σk−1

σk
jt + (1− αj)

1
σk L

σk−1

σk
jt

] σk
σk−1

(46)

and

Mjt =

(
N∑
i=1

γ
1

σm
ij M

σm−1
σm

jt

) σm
σm−1

. (47)

We assume that productivity shocks affect the primary inputs because, as shown in Sato

(1976), there would otherwise not exist a unique function for real value added. Therefore, in

these exercises, we feed in productivity measured as value added net of primary inputs (rather

than measured as gross output net of all inputs as in the main text). We also generalize the

consumption aggregate which enters utility to be:

Ct =

(
N∑
j=1

ξ
1
σc
j C

σc−1
σc

jt

) σc
σc−1

. (48)

We choose values for the elasticities of substitution from Oberfield and Raval (2021) and

Atalay (2017). We set the elasticity of substitution between consumption goods to σc = 0.75,
67We allow the same set of parameters as in the transition path exercise to change over time, plus the

persistence of TFP shocks ρj . We compute the average value of these parameters separately for the pre vs.
post 1984 subsamples and compute simulated moments given the covariance matrix of shocks estimated as
above.
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which is on the low end of the range of values considered in Oberfield and Raval (2021) (0.75-

1.15).68 We set the elasticity between intermediate inputs to Atalay (2017)’s preferred value

σm = 0.1. We set the elasticity between primary inputs and intermediates to the midpoint of

the range of estimates in Oberfield and Raval (2021) (0.6-1), i.e., σy = 0.8. Finally, we set the

elasticity between capital and labor to Oberfield and Raval (2021)’s midrange of σk = 0.6.69

Given these parameter values, we then re-calibrate the share parameters in the production

function in order to match the expenditure shares in the model’s steady state to the data.

Table G.4 reports a number of results using these alternative functional forms. First, for

the sake of comparability, the top left panel shows the results from our baseline Cobb-Douglas

model are very similar when we measure productivity as value added net of primary inputs

(which we must do in the CES case given (46)).70 Second, the top middle panel shows that

allowing for the CES production and utility functions barely affect the changes in business

cycle statistics over time; for example, the cyclicality of labor productivity declines by 0.64

with CES functional forms compared to 0.61 with Cobb-Douglas. However, the overall level

of employment and GDP volatility is higher with the CES functional forms, consistent with

the idea that complementarity amplifies overall volatility.

The next four panels of Table G.4 decompose the role of each elasticity of substitution in

isolation, and show that the higher volatility of the CES model is driven by the complemen-

tarity between capital and labor. This finding indicates that, in the CES model, investment

fluctuations have a large impact on labor demand, which mirrors our main result in the

Cobb-Douglas model that they have a large impact on labor supply.

Finally, the bottom panels of Table G.4 investigate the role of nonlinearities by computing

a second-order approximation of the model.71 Baqaee and Farhi (2019) show how a second-
68We choose the low end of this range because Oberfield and Raval (2021) looks at finely disaggregated

manufacturing industries, which have greater similarity, and thus potentially a higher degree of substitutabil-
ity, than the 37 sectors we consider covering the entire private non-farm economy.

69We have also tried using Karabarbounis and Neiman (2014)’s estimate σk = 1.25 and found that this
higher elasticity does not substantially impact our results (available upon request).

70Of course, the two notions of productivity are theoretically isomorphic under Cobb-Douglas production:
Ãjt = A

1
θj

jt where Ãjt is TFP measured as value added net of primary inputs and Ajt is measured as
gross output net of all inputs. However, this relationship may not hold in the data if production is not
Cobb-Douglas or there is measurement error.

71We need to specify the covariance matrix of TFP shocks in order to solve for the decision rules because
certainty equivalence does not hold in a second-order approximation. We use the sample covariance matrix
for our measured innovations to TFP for the entire period 1948-2018.
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Table G.4
Allowing for Non-Cobb Douglas Functional Forms

CD All CES σc only
Pre-1984 Post-1984 Pre-1984 Post-1984 Pre-1984 Post-1984

σ(∆yt) 3.89% 2.79% 4.31% 2.94% 3.87% 2.79%
ρ(∆yt −∆lt,∆yt) 0.52 -0.15 0.30 -0.38 0.54 -0.14
σ(∆lt)/σ(∆yt) 0.90 1.05 0.96 1.08 0.89 1.04
σ(∆it)/σ(∆yt) 3.78 4.09 3.73 4.17 3.79 4.11

σk only σy only σm only
Pre-1984 Post-1984 Pre-1984 Post-1984 Pre-1984 Post-1984

σ(∆yt) 4.43% 2.98% 3.85% 2.76% 3.86% 2.79%
ρ(∆yt −∆lt,∆yt) 0.24 -0.35 0.50 -0.20 0.55 -0.12
σ(∆lt)/σ(∆yt) 0.97 1.08 0.90 1.06 0.89 1.04
σ(∆it)/σ(∆yt) 3.71 4.01 3.81 4.13 3.77 4.14

CD (2nd order) All CES (2nd order) Ident Inv., CES, 2nd
Pre-1984 Post-1984 Pre-1984 Post-1984 Pre-1984 Post-1984

σ(∆yt) 3.89% 2.79% 4.38% 3.07% 3.71% 2.23%
ρ(∆yt −∆lt,∆yt) 0.53 -0.11 0.29 -0.43 0.57 0.45
σ(∆lt)/σ(∆yt) 0.89 1.04 0.96 1.10 0.92 0.92
σ(∆it)/σ(∆yt) 3.98 4.45 3.98 4.52 2.78 2.76

Notes: business cycle statistics in the pre-1984 sample (1948 - 1983) and post-1984 sample (1984-2018). yt
is log real GDP, lt is log aggregate employment, it is log real aggregate investment, and ∆ denotes the first
difference operator. “CD” corresponds to the baseline model, but instead measuring productivity shocks as
value added net of primary inputs rather than gross output net of all inputs. “All CES” corresponds to the
model with all functional forms (as described in the text) allowed to be CES. “σc only” corresponds to only
having a CES nest in consumption aggregation. “σk only” corresponds to only having a CES nest in capital
and labor. “σv only” corresponds to only having a CES nest between value added and intermediates. “σm

only” corresponds to only having a CES nest in intermediate bundling. “CD (2nd order)” corresponds to
solving the model using a 2nd order approximation when using value added based measures of TFP. “All
CES (2nd order)” corresponds to solving the model with a second order approximation with all functional
forms are CES, as described in the text. “Ident Inv., CES, 2nd” corresponds to solving the model with a
second order approximation with all functional forms are CES and where the investment network is set to
the identity matrix.
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order approximation allows the model to capture rich substitution patterns which exist with

CES production functions. However, we find that these nonlinearities do not have a large

effect on the changes in aggregate fluctuations on which we focus in this paper. In fact, with

an identity investment network, there is almost no change in aggregate fluctuations, as was

the case in the first-order Cobb-Douglas specification of the main text.

G.5 Other Robustness Checks

Adding Other Frictions We now show that our results are robust to allowing for frictions

to reallocating labor across sectors and to accumulating capital within sectors. The labor

reallocation frictions we consider modify the disutility of labor to become
(∑

j L
τ+1
τ

jt

) τ
τ+1

(as in Horvath (2000)), which implies that workers are imperfect substitutes across sectors.

We set the value of τ = 4.5 to match the volatility of employment relative to GDP in the

pre-1984 period. The capital adjustment costs modify the capital accumulation equation in

each sector to take the following form:

Kjt+1 = (1− δj)Kjt + Ijt −
ϕ

2

(
Ijt
Kjt

− δj

)2

Kjt (49)

We calibrate the size of adjustment costs ϕ to match the volatility of investment within

sectors using a decomposition for aggregate investment variance like the one for employment

in Equation (19), in a model without investment production frictions (i.e. ρ = −1). This

generates a value of ϕ = 0.5. We also consider results where we use this value for the

adjustment costs and include investment production frictions with ρ = −1.04.

Table G.5 shows that including these frictions does not significantly impact our main

findings. While both of sets of frictions decrease the relative volatility of employment – and

therefore increase the overall cyclicality of labor productivity – the cyclicality still falls over

time by as much in the data.

Maintenance As discussed in footnotes 5 and 9, some previous studies using the 1997

BEA capital flows table were forced to make a correction to the investment network in order
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Table G.5
Robustness with Respect to Other Frictions

Baseline Labor Reallocation Convex AC only
Pre-1984 Post-1984 Pre-1984 Post-1984 Pre-1984 Post-1984

σ(∆yt) 3.95% 2.42% 3.63% 2.21% 3.62% 2.20%
ρ(∆yt −∆lt,∆yt) 0.52 -0.01 0.71 0.33 0.70 0.36
σ(∆lt)/σ(∆yt) 0.90 1.03 0.83 0.95 0.83 0.94
σ(∆it)/σ(∆yt) 3.78 4.11 3.49 3.81 3.56 3.88

All Capital Frictions
Pre-1984 Post-1984

σ(∆yt) 3.59% 2.19%
ρ(∆yt −∆lt,∆yt) 0.72 0.40
σ(∆lt)/σ(∆yt) 0.82 0.93
σ(∆it)/σ(∆yt) 3.54 3.90

Notes: business cycle statistics in the pre-1984 sample (1948 - 1983) and post-1984 sample (1984-2018). yt
is log real GDP, lt is log aggregate employment, it is log real aggregate investment, and ∆ denotes the first
difference operator. “Baseline” refers to the baseline model described in the main text. “Labor
Reallocation” refers to adding labor reallocation frictions from Horvath (2000). “Convex AC only” refers to
adding only quadratic capital adjustment costs without investment production frictions (i.e. setting
ρ = −1). “All Capital Frictions” corresponds to including both investment production frictions and convex
adjustment costs.

Table G.6
Robustness with Respect to Maintenance Investment

Baseline 12.5% Maintenance
Pre-1984 Post-1984 Pre-1984 Post-1984

σ(∆yt) 3.95% 2.42% 3.81% 2.30%
ρ(∆yt −∆lt,∆yt) 0.52 -0.01 0.57 0.10
σ(∆lt)/σ(∆yt) 0.90 1.03 0.88 1.00
σ(∆it)/σ(∆yt) 3.78 4.11 3.77 4.06

Notes: business cycle statistics in the pre-1984 sample (1948 - 1983) and post-1984 sample (1984-2018). yt
is log real GDP, lt is log aggregate employment, it is log real aggregate investment, and ∆ denotes the first
difference operator. “Baseline” refers to the baseline model described in the main text, which uses
ρ = −1.04. “12.5% maintenance” adjusts the investment network to allow for an additional 12.5% of
investment expenditures to be purchased from within each sector.
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to ensure the model is invertible.72 A motivation for this correction is to account for “mainte-

nance investment” that may be a large part of investment activity but which is not accounted

for in the BEA data (see McGrattan and Schmitz Jr (1999)). However, a key challenge in

adjusting for maintenance is that the mix of sectors which produce this maintenance invest-

ment is not observable in the data. One extreme assumption is that maintenance is produced

by the same mix of sectors as the new investment recorded in our investment network; in this

case, the investment network would not change. The opposite extreme assumption is that

all maintenance investment is produced using own-sector output. We follow Foerster, Sarte

and Watson (2011) and assume that 50% of maintenance investment is produced propor-

tionally to the investment network process and 50% is produced using own-sector resources.

Given that McGrattan and Schmitz Jr (1999) identify maintenance expenditures to be, on

average, 30% as big as new investment in national accounts (and thus roughly 20-25% of a

combination of all new and maintenance investment), we account for maintenance invest-

ment by adding a correction to the diagonal amounting to 12.5% of total investment. Table

G.6 shows that with this adjustment to the investment network our results continue to hold.

The fact that each sector now uses its own output for investment weakens the strength of the

investment hubs, but quantitatively, the model still generates a decrease in the correlation

of labor productivity and aggregate GDP similar to our baseline results.

Detrending As discussed in the main text, we detrend measured TFP using a log-polynomial

trend before feeding it into our model. Table G.7 shows that our main results are robust to

using a second-order or fifth-order polynomial trend, rather than a fourth-order one as in

the main text.73

H Changes in Aggregate Cycles Driven by Changes in

Sectoral Comovement

This Appendix contains additional results referenced in Section 6 in the main text.
72In numerical simulations we have done, it appears a key reason this correction may be necessary is

because TFP shocks are assumed to follow a random walk.
73Our results are very similar when using a third-order trend as well; we omit those results for parsimony.
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Table G.7
Robustness with Respect to Other Levels of Detrending

Baseline (4th order) 2nd order trend 5th order trend
Pre-1984 Post-1984 Pre-1984 Post-1984 Pre-1984 Post-1984

σ(∆yt) 3.95% 2.42% 3.75% 2.30% 3.88% 2.66%
ρ(∆yt −∆lt,∆yt) 0.52 -0.01 0.66 0.23 0.47 0.07
σ(∆lt)/σ(∆yt) 0.90 1.03 0.85 0.98 0.92 1.01
σ(∆it)/σ(∆yt) 3.78 4.11 3.65 3.95 3.87 4.07

Notes: business cycle statistics in the pre-1984 sample (1948 - 1983) and post-1984 sample (1984-2018). yt
is log real GDP, lt is log aggregate employment, it is log real aggregate investment, and ∆ denotes the first
difference operator. Different columns present results for different degrees of the polynomial trend that we
take out of measured TFP before feeding it into the model. “Baseline (4th order)” refers to the baseline
model described in the main text, detrends using a fourth-order polynomial. “2nd order trend” refers to
using a quadratic trend and “5th order trend” refers to using a 5th order polynomial.

H.1 Proof of Footnote 31

We first show that the decline in the cyclicality of aggregate labor productivity is entirely

accounted for, in a statistical sense, by the increase in the volatility of employment relative to

the volatility of output (as shown in equation Footnote 31 in the main text). Of course, the

definition of the correlation between labor productivity and output is Corr(∆yt,∆yt−∆lt) =

Cov(∆yt,∆yt−∆lt)
σ(∆yt)σ(∆yt−∆lt)

where yt denotes logged and GDP and lt is logged aggregate employment (the

proof also holds for logged and HP filtered data). Using the linear properties of covariance

and rearranging, we can write this as:

Cov(∆yt,∆yt −∆lt)

σ(∆yt)σ(∆yt −∆lt)
=

Cov(∆yt,∆yt)

σ(∆yt)σ(∆yt −∆lt)
− Cov(∆yt,∆lt)

σ(∆yt)σ(∆yt −∆lt)
=

σ(yt)

σ(∆yt −∆lt)
− σ(∆lt)

σ(∆yt −∆lt)
Corr(∆yt,∆lt) =

σ(yt)

σ(∆yt −∆lt)

(
1− σ(∆lt)

σ(∆yt)
Corr(∆yt,∆lt)

)

We can write σ(∆yt −∆lt) as:

σ(∆yt −∆lt) =
√
σ(∆yt)2 + σ(∆lt)2 − 2Cov(∆yt,∆lt)

= σ(∆yt)

√
1 +

(
σ(∆lt)

σ(∆yt)

)2

− 2

(
σ(∆lt)

σ(∆yt)

)
Corr(∆yt,∆lt)
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Table H.1
Components of Aggregate Labor Productivity Cyclicality

Pre-1984 Post-1984
Corr(∆yt −∆lt,∆yt) 0.56 0.28
Corr(∆yt,∆lt) 0.80 0.83
Corr(∆yt,∆lt) only 0.56 0.56
σ(∆lt)/σ(∆yt) 0.83 1.01
σ(∆lt)/σ(∆yt) only 0.56 0.30

Notes: decomposition of the cyclicality of labor productivity in the pre-1984 sample (1948 - 1983) and
post-1984 sample (1984-2018). yt is log aggregate value added, lt is log aggregate employment, and ∆ is the
first-difference operator. “Corr(∆yt,∆lt) only” computes the cyclicality of labor productivity from (18)
using the actual value of Corr(∆yt,∆lt) in each subsample but holding fixed σ(∆lt)/σ(∆yt) at its value in
the pre-1984 subsample. “σ(∆lt)/σ(∆yt) only” computes labor productivity from (18) using the actual
value of σ(∆lt)/σ(∆yt) in each subsample but holding fixed Corr(∆yt,∆lt) at its value in the pre-1984
subsample.

Combining this expression with the previous one yields:

σ(yt)

σ(∆yt −∆lt)

(
1− σ(∆lt)

σ(∆yt)
Corr(∆yt,∆lt)

)
=

1− σ(∆lt)
σ(∆yt)

Corr(∆yt,∆lt)√
1 + σ(∆lt)2

σ(∆yt)2
− 2 σ(∆lt)

σ(∆yt)
Corr(∆yt,∆lt)

which is expression (18) in the main text. This expression makes clear that the correlation of

labor productivity with GDP depends only on two statistics: the correlation between output

and employment (Corr(∆yt,∆lt)) and the relative standard deviation of employment and

GDP ( σ(∆lt)
σ(∆yt)

).

Table H.1 shows that the correlation of employment and GDP is stable over time; there-

fore, the rising volatility of employment relative to GDP accounts for the entire decline in

the cyclicality of labor productivity. Intuitively, since GDP and employment are so highly

correlated, the time series behavior of their ratio just depends on which component is more

volatile.

H.2 Robustness of business cycle moments

We now show that the aggregated and within sector business cycle moments from Table

8 are robust to various choices in the statistical methodology. Table H.2 show that those
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Table H.2
Changes in Business Cycles, HP Filter

Data Aggregated Within-Sector
Pre-1984 Post-1984 Pre-1984 Post-1984

σ(yt) 2.03% 1.24% 3.27% 2.62%
ρ(yt − lt, yt) 0.52 0.14 0.63 0.66
σ(lt)/σ(yt) 0.85 1.09 0.83 0.77

Model Aggregated Within-Sector
Pre-1984 Post-1984 Pre-1984 Post-1984

σ(yt) 2.52% 1.80% 3.66% 3.22%
ρ(yt − lt, yt) 0.53 0.01 0.78 0.82
σ(lt)/σ(yt) 0.92 1.01 0.55 0.47

Notes: business cycle statistics in the pre-1984 sample (1948 - 1983) and post-1984 sample (1984-2018). yt
is log value added and lt is log employment. “Aggregated” aggregates value added across sectors using a
Tornqvist index weighted by nominal value added shares, aggregates employment as the simple sum,
HP-filters both series with smoothing parameter λ = 6.25, and computes the statistics. “Within-Sector”
HP-filters each sector-level series with smoothing parameter λ = 6.25, computes the statistics, and then
averages them weighted by the average share of nominal value added within that sub-sample. To avoid
endpoint bias from the HP filter, we omit the first and last three years of data of the entire sample in
computing these figures.

Table H.3
Within-Sector Business Cycle Statistics with Different Weights

Time-Varying (Baseline) Fixed Weights Unweighted
Pre-1984 Post-1984 Pre-1984 Post-1984 Pre-1984 Post-1984

σ(∆yt) 5.42% 4.29% 4.98% 4.62% 6.90% 5.90%
ρ(∆yt −∆lt,∆yt) 0.69 0.67 0.68 0.69 0.76 0.76
σ(∆lt)/σ(∆yt) 0.76 0.81 0.78 0.78 0.66 0.63

Notes: business cycle statistics in the pre-1984 sample (1948 - 1983) and post-1984 sample (1984-2018). yt
is log value added, lt is log employment, and it is log investment. “Baseline” first-differences each variable,
computes the statistics, and then averages them weighted by the average share of nominal value added
within that sub-sample. In “Fixed Weights,” we use each sector’s value added share averaged for the entire
sample window to weight sectoral moments both pre- and post-1984. In “Unweighted,” we construct
moments as the simple mean across all sectors.
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results, in both the model and the data, continue to hold using the HP filter rather than first

differences to detrend the data. Table H.3 shows that the average value of the within sector

statistics is similar when using fixed weights or no weights, compared to using time-varying

weights (as in the main text).

H.3 Derivation of Decomposition (19)

To derive the decomposition presented in equation (19), we start by decomposing the variance

of aggregate employment into within-sector variances and between-sector covariances. We

take a first-order Taylor approximation of aggregate employment growth, which yields

∆lt ≈
N∑
j=1

ωl
jt∆ljt

where ωl
jt is the average share of sectoral employment in the aggregate for the time period

studied, lt is log aggregate employment, and ljt is log sector-level employment. The approx-

imation reflects the facts that the log of the sum is not equal to the sum of the logs and

that the shares ωl
jt are not constant over time. Given this linear expression for aggregate

employment, standard rules of variance and covariance imply the following decomposition

of aggregate employment variance:

Var(∆lt) ≈
N∑
j=1

(ωl
jt)

2Var(∆ljt) +
N∑
j=1

∑
o ̸=j

ωl
jtω

l
otCov(∆ljt,∆lot)

We perform a similar decomposition for aggregate GDP, and then we consider the ratio

of these two decompositions.74 This ratio is given by:
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y
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74Since aggregate GDP is obtained via a Tornqvist index, log changes in GDP are already given as a
weighted sum of log changes in sectoral value added. Thus, the approximation only reflects the fact that the
weights are not constant over time.
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Table H.4
Accuracy of the Decomposition

Pre-84 Post-84
Actual, variance 0.68 1.02
Approximation, variance 0.68 1.04
Actual, standard deviation 0.83 1.01
Approximation, standard deviation 0.83 1.02

Notes: variance and standard deviation of real GDP to aggregate employment. “Actual” refers to the actual
values of those statistics in the aggregate data. “Approximation” refers to the right-hand side of the
decomposition (19).

This expression can be rewritten as:
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And then, defining the “variance weight” as ωt =
∑N

j=1(ω
y
jt)

2Var(∆yjt)/Var(∆yt), we

obtain the final relationship (19) in the main text.

H.4 Additional Quantitative Results

Accuracy of the Decomposition Table H.4 shows that the approximate decomposition

(19) is accurate in our data. In particular, the relative variance and the standard deviation

of employment implied by the decomposition are close to their actual values in the data.

Changes in Comovement Patterns In the main text, we asserted that the comovement

of value added across sectors fell in the post-1980s data but the comovement of employment

did not. We now support this assertion by computing the change in the average correlation

of value added and employment growth across pairs of sectors:

ρxτ ≡
∑N

i=1

∑N
j=i+1 ω

x
i ω

x
jCorr(∆xjt,∆xjt|t ∈ τ)∑N

i=1

∑N
j=i+1 ω

x
i ω

x
j

(50)
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Table H.5
Average Pairwise Correlations, Model vs. Data

Data Model
Employment Value added Employment Value added

Pre-1984 0.50 0.29 0.98 0.32
Post-1984 0.49 0.17 0.95 0.14
Difference -0.01 -0.12 -0.03 -0.18

Notes: average pairwise correlations ρxτ in (50). “Pre-1984” computes ρxτ in the 1948-1983 subsample and
“post-1984” computes ρxτ in the 1984-2017 subsample. “Data” refers to the data and “Model” to the model.

where xjt is either employment or value added and ωj are value added or employment shares.

Table H.5 shows that the correlation of value added falls nearly in half, generating most

of the decline in the covariances in the decomposition (19); in contrast, the correlation of

employment is essentially stable, generating the stability of the between sector covariances

as well.75 To our knowledge, our model is the only explanation for the declining cyclicality

of aggregate labor productivity that is consistent with these facts in the data.

Sector Pair Covariance Changes In the main text, we asserted that the changes in

covariance patterns are broad-based and not driven by outliers. We illustrate these patterns

in Figure H.1, which provides a scatter plot of the change in employment and value added

covariances for each sector pair. The covariance of value added declines for most pairs of sec-

tors in the data. Further, while there is substantial heterogeneity in changes in the covariance

of employment, these changes are generally of a smaller magnitude than the changes in value

added covariance. The figure also shows that these patterns are not driven by outliers but

are occurring across many sector pairs.

Model Fit to Covariance Changes across Sector Pairs We now show that the model

matches changes in covariance patterns across individual sector pairs. We summarize the

sector-pair level change with the “diff-in-diff” ∆Cov(ljt, lot) − ∆Cov(yjt, yot). On average,
75The fact that the correlation of employment across sectors is higher in our model than the data is driven

by our choice of an infinite Frisch elasticity η → ∞, as described in Footnote 54. However, allowing for a finite
Frisch still implies that the correlation of employment across sectors is stable over time (details available
upon request).
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Figure H.1: Scatterplot of Changes in Sector-Pair Covariances
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Notes: This figure plots changes in the covariance for each pair of sectors (j, o) in our dataset. The
horizontal axis computes the change in the covariance of value added Cov(yjt, yot) in the post-1984 sample
(1984-2018) relative to the pre-1984 sample (1948-1983). Each point is weighted by the product of the two
sector-pair’s average nominal value added share over the whole sample. The blue solid line is the OLS
regression line. Employment and value added are in log first differences.

this object is positive because employment covariances change by less than the value added

covariances, and larger values correspond to a larger divergence between employment and

value added covariances over time. We plot this diff-in-diff in the data and in the model in

Figure H.2. Although neither of these objects were targeted in the calibration, the model

explains 50% of the cross-sectional variation in the data.76

Decomposition in Finer Disaggregation of Manufacturing Table H.6 shows that

our results hold using a finer disaggregation of sectors within the manufacturing sector only.

These data are from the NBER-CES database, which covers 462 manufacturing sectors from

1958-2011.77 We still observe at this finely disaggregated level that the rise in the relative

variance of employment to GDP is almost exclusively due to changes in the covariance of

activity across sectors.
76The weighted regression line for the data and the model is slightly less steep than the 45-degree line (a

regression coefficient of 0.85), indicating that the magnitude of the differences in differences is slightly larger
in the model than in the data. However, even the R2 of the 45-degree line remains high at R2 = 0.39.

77There are seven sectors which we omit because they report zero employment at some point in the sample
frame.
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Figure H.2: Model Fit of Sector-Pair Level ∆Cov(ljt, lot)−∆Cov(yjt, yot) (R2 = 50%)
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Notes: model fit to sector-pair (j, o) value of ∆Cov(ljt, lot)−∆Cov(yjt, yot), where ∆Cov(ljt, lot) is the
covariance of log first differenced employment in the post-1984 sample relative to the pre-1984 sample, and
∆Cov(yjt, yot) is the covariance of log first differenced value added in the post-1984 sample relative to the
pre-1984 sample. Horizontal axis is the value of that statistic in the data while the vertical axis is the value
in the model. The solid line is the regression line across all sectors, which has an R2 of 0.53. The dashed
line is the 45-degree line. In the plot, circle size is proportional to the product of the pair’s share of value
added over the entire sample.

Table H.6
Decomposition of Relative Employment Volatility, NBER-CES

Pre-84 Post-84 Contribution
of entire term

Var(lt)
Var(yt) 0.37 0.57 100%

Variances 0.33 0.21 1.4%
Covariances 0.37 0.60 98.6%

Variance Weight 0.03 0.06
( ωt =

∑N
j=1(ω

y
jt)

2Var(yjt)/Var(yt))

Notes: results of the decomposition (19) using NBER-CES data for 462 manufacturing sectors. “Variances”
refers to the variance component

∑N
j=1(ω

l
jt)

2Var(ljt)∑N
j=1(ω

y
jt)

2Var(yjt)
. “Covariances” refers to the covariance component∑N

j=1

∑
o ̸=j ωl

jtω
l
otCov(ljt,lot)∑N

j=1

∑
o ̸=j ωy

jtω
y
otCov(yjt,yot)

. “Variance weight” refers to the weighting term

ωt =
∑N

j=1(ω
y
jt)

2Var(yjt)/Var(yt). “Contribution of entire term” computes the contribution of the first
term of the decomposition (19) (in the variances row) and the contribution of the second term (in the
covariances row). Real value added is constructed using the gross output price deflator.
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Table H.7
Decomposition of Relative Employment Volatility, Equal Weights

Baseline Equal Weights
Pre-84 Post-84 Contribution Pre-84 Post-84 Contribution

of entire term of entire term
Var(lt)
Var(yt) 0.68 1.04 100% 0.72 0.94 100%

Variances 0.41 0.48 15% 0.44 0.41 11%
Covariances 0.72 1.19 85% 0.76 1.06 89%

Variance Weight 0.12 0.21 0.12 0.19
( ωt =

∑N
j=1(ω

y
jt)

2Var(∆yjt)/Var(∆yt))

Notes: results of the decomposition (19) in the pre-1984 sample (1948 - 1983) and post-1984 sample
(1984-2018). “Baseline” refers to the decomposition from the main text. “Equal weights” sets all the
weights ωy

jt = ωl
jt = 1.

Table H.8
Decomposition of Relative Employment Volatility, HP Filter

First Differences HP Filter
Pre-84 Post-84 Contribution Pre-84 Post-84 Contribution

of entire term of entire term
Var(lt)
Var(yt) 0.68 1.04 100% 0.72 1.09 100%

Variances 0.41 0.48 15% 0.48 0.49 13%
Covariances 0.72 1.19 85% 0.75 1.25 87%

Variance Weight 0.12 0.21 0.11 0.20
( ωt =

∑N
j=1(ω

y
jt)

2Var(∆yjt)/Var(∆yt))

Notes: results of the decomposition (19) in the pre-1984 sample (1948 - 1983) and post-1984 sample
(1984-2017). “First differences” refers to first differencing the data as in the main text. “HP filter” refers to
using HP-filtered data. To avoid endpoint bias with the HP filter, we eliminate the first and last three
years of the sample.

Equal Weights in the Decomposition Since our decomposition (19) is weighted by

sector size, the changes over time may be driven by changes in the distribution of weights

rather than changes in comovement patterns. However, H.7 shows that this is not the case;

the results are nearly identical if we use constant, equal weights over time.

HP Filter Table H.8 shows that the decomposition results are robust to using the HP

filter rather than first-differences.
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